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S;;7 S22 Sy3 0 Sy 0 0 0 S13 0 0 0
831 Ss2  So3 = s O 0] + 0 0|+ |0 0 sy
S3; S3p 833 0 0 0 83, (] 0 0 839 0

- 0 0 0 0 0

+ 0 —sp; 0) + | 0 —s33 0

0 0 0 0 0 S33

where the last two tensors are seen to be equivalent to simple shear states by comparison of cases
(a) and (b) in Problem 2.26. Also note that since s; =0, —s;; —s33 = 8g.

2.29. Determine the principal deviator stress values for the stress tensor

10 -6 0
o = |—6 10 0
0 0 1
3 —6 o0
The deviator of o;; is s;; = -6 3 0 and its principal values may be determined
from the determinant 0 0 —6
3—s —6 0
—6 3—s 0 = (—6—s)s+3)(s—9) = 0
0 0 —6—s

Thus s; =9, sy =—8, sy = —6. The same result is obtained by first calculating the principal
stress values of ¢;; and then using (2.71). For o, as the reader should show, o; =16, oy =4,
o =1 and hence s; =16—7=9, sy =4—-7=-3, sy =1—T7T=—6,

2.30. Show that the second invariant of the stress deviator is given in terms of its principal
stress values by IIs, = (sisu + susin + smsi), or by the alternative form Iz, =
—"%‘(s% + 3%1 + sfll)'

In terms of the principal deviator stresses the characteristic equation of the deviator stress
tensor is given by the determinant

s;— 8 0 0
0 Sip—s 0 = (s;—8)sp—s)sp—s) = 0
0 0 Sy —$§
= 88 + (s8y + suSip t+ SuS)S — SiSuSm
Hence from (2.72), Il = (si81; + suSmr + 8pursp). Since sy + sy + sy = O,
Iy = 3@sisy + 288 + 2881~ (Sr+ 8+ 8m)?) = —§(s? + 8% + 82

MISCELLANEOUS PROBLEMS

2.31. Prove that for any symmetric tensor such as the stress tensor o;, the transformed
tensor o, in any other coordinate system is also symmetric.

r — — p— !
From (2.27), of; = a;,0;q0,q = @jq®ipTqp = Tjie
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2.32.

2.33.

2.34.

2.35.

2.36.
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At the point P the principal stresses are such that 20, = o, + ¢;;;. Determine the unit
normal n; for the plane upon which oy = ¢, and o5 = (o, —o,)/4.

From (2.83), oy = nloy+ ni(op+ o)/2 + nioyy = (op + op)/2; and since ny + ol nd =1,
these equations may be combined to yield n, = n;. Next from (2.47),
0% = ”101 + ”2(01 + om)2/4 + nie m — (o1 + o1 )?/4 = (o — oy )?/16
Substituting 7, = n; and #2 —1 = —n‘:‘ —nl= —2n‘:‘ into this equation and solving for n,, the direc-
tion cosines are found to be %, = 1/2V/2, n, = /3/2, ng = 1/2//2. The reader should apply these
4 0 0

results to the stress tensor o; = 0 5 0
0 0 6

Show that the stress tensor o,; may be decomposed into a spherical and deviatoric
part in one and only one way.

Assume two decompositions, o; = S\ + 8; = §yA* + s’% with s; =0 and s§=0. Then
05 = 83X = 3\%, so A =A% and from A8y 8; = A8y +si; it follows that s; = s¥.

Prove that the principal stress values are real if Z is real and symmetric.

For real values of the stress components the stress invariants are real and hence the coefficients
in (2.88) are all real. Thus by the theory of equations one root (principal stress) is real. Let os,
be this root and consider a set of primed axes #{ of which 3 is in the direction of o3y, With respect to

’ !
g — @ a1 0
such axes the characteristic equation is given by the determinant o g9 — @ 0 =0
0 0 0(3) — G

or (acgy —0a)[(o]; —a)(ass — o) —a;3] = 0. Since the discriminant of the quadratic in square brackets
D = (of, + 0492 — 4[0]105, — (0]3)%] = (o]; — 02)2 + 405 > 0, the remaining roots must be real.

Use the method of Lagrangian multipliers to show that the extremal values (maximum
and minimum) of the normal stress o, correspond to principal values.

From (2.33), oy = a;mn; with mm; = 1. Thus in analogy with (2.51) construct the function
H = oy — Anyn; for whlch dH/om; = 0. Then
%ﬁ— = oy, 0+ oo, — 23 ,m,
— 113 ] n: + (T”‘ﬂ 5”, 2)‘8'1;1"1'
= “m”1+ i — 2081y = 2(a, Ay = 0

which is equivalent to equation (2.26) defining principal stress directions.

Assume that the stress components o, are derivable from a symmetric tensor field

¢,; by the relationship o; = ¢, ¢, q,,m Show that in the absence of body forces the
equ111br1um equations (2.23) are satisfied.

Using the results of Problem 1.58, the stress components are given by

a3 = 8ij(bqq.pp ™ Bap.ap) T Ppipi T Piv.pi — Pop,ii — Pitop
or explicitly 011 = 33,90 T $29,33 G1p = 031 = 33,231
022 = ¢11,33 + #33,11 g3 = 033 = —¢11,23

Il

a33 $22,11 + P11,22 g3 = 013 = 933,13
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2.37.

2.38.

Substituting these values into ¢;;; = 0,

011,1 T 012,2 + 013,3 = ¢33,001 T P202,331 — P33,012 — P22,133 — O
091,1 T 02,5 + 0a3,3 = —@a3z,011 + P11,332 + P33,112 — P1r,233 = O
031,1 © 9a2,2 T 933,33 = —¢23,131 — P11,232 T P22,113 T Pr1,023 = 0

Show that, as is asserted in Section 2.9, the normal to the Cauchy stress quadric
at the point whose position vector is r is parallel to the stress vector #».

Let the quadric surface be given in the form ¢ = ¢;;{;{; = k2 = 0. The normal at any point is
then Vg or d¢/df; = ¢, Hence ¢, = 08,8+ 05885, = 20,8 Now since {; = rn;, this becomes

A
2a,rn; or 27(aym;) = Zt;n).

At a point P the stress tensor referred to axes Oxxszs is given by

15 -10 0
o = |[-10 5 0
0 0 20
If new axes Ox,2sx5 are chosen by a rotation about the origin for which the trans-
3/5 0 —4/5
formation matrix is [ay] =| O 1 0 |, determine the traction vectors on each
4/5 0 3/5

of the primed coordinate planes by projecting the traction vectors of the original axes
onto the primed directions. In this way determine o/,. Check the result by the trans-
formation formula (2.27).

From (2.6) and the identity t;é\i) = g;; (2.7), the traction vectors on the unprimed coordinate

axes are t(¢¥ = 158, — 108, € = —108, + 59, t€ = 208, which correspond to the rows
of the stress tensor. Projecting these vectors onto the primed axes by the vector form of (2.12),

tn) = nlt(el) + nzt(eg) + nat(e;;)’ gives
teD = 3159, — 108,) — #(208;) = 98 — 68, — 16&,

which by the transformation of the unit vectors becomes

e = 9(28, + 48¢;) — 68, — 16(—%8] + 38;) = 91€)/5 — 68, — 128;/5
Likewise te = —6¢ + 58, — 8%,
and te = —12%)/5 — 88, + 848,/5

91/5 —6 —12/5

so that oy = —6 5 —8
—12/5 —8 84/5

85 o0 —a/5 |[ 15 —10 0 3/5 0 4/5
By (2.27), of = 0 1 o |l-10 5 o 0o 1 o
45 o 35| 0 o0 20| —4/5 0 3/5

9 —6 —16]|[ 355 o 4/5 91/5 —6 —12/5

= |10 5 o 0 1 o = -6 5 -8

| 12 -8 12 || —4/5 0 3/5 —12/5 —8 84/5
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2.39.

2.40.
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Show that the second invariant of the deviator stress tensor Iz, is related to the
octahedral shear stress by the equation o,., = V/—31Iz,.

From Problem 2.22, opcr = %\/(al —o1)2 + (o1 —oqr)? + (op — 07)2, and because o; = oy + 5y,
o = om + 811, etc.,

socr = HV(si—s1)? + (s1— si)? + (s11r— 81)2

=% \/2('9% +8f; + st) — 2181 + SuSti + S1rsy)

Also s;+ s+ sy =0 and so (sp+s +8)2 =0 or

2 2 2 —
st + s + st = —2(818u1 + SusSm + S1Sy)

Hence doct = %\/—6(31311 + spsmr + Suisi) = \r—%nzb

The state of stress throughout a body is given by the stress tensor

0 Cxs 0 -
" = ng 0 "Cxl
0 ~C’-’,Ul 0

where C is an arbitrary constant. (a) Show that the equilibrium equations are
satisfied if body forces are zero. (b) At the point P(4,—4,7) calculate the stress
vector on the plane 2, +2x:— 23 = —7, and on the sphere (x1)%+ (%2) + (23)? = (9)2
(c) Determine the principal stresses, maximum shear stresses and principal deviator
stresses at P. (d) Sketch the Mohr’s circles for the state of stress at P.

(a) Substituting directly into (2.24) from ¢;; the equilibrium equations are satisfied identically.

(b) From Problem 1.2, the unit normal to the plane 2z, + 2z, — 23 = —7 is N =28, + 286, — 1 &,.
1 g€ T3 3
Thus from (2.12) the stress vector on the plane at P is
t™ = (28, +38 —1&)  (TC&88, + TC&e, —4C 8,83 —4CE8,)
= C%,+48 —18,+38) = 1C(148,+188, -89y

The normal to the sphere zx; = (9)2 at Pis n; =¢; with ¢ = xu; —81, or n= %31 —
%32 + %33. In the matrix form of (2.14) the stress vector at P is

0 7C 0
[4/9, —4/9,7/9]| 7C 0 —4C = [—28C/9, 0, 16C/9]
0 —4C o0

(¢) From (2.87), for principal stresses o,

ag

— 7 0 s (05)max = V6B

7T —¢ —4 = (02 —65) = 0; hence

0 —4 —0¢
o = V65, o = 0, o = —V65. The - Ve

f s . . o = V6b
maximum shear stress value is given by =0 g

= N

(2.54b) as o5 = (oyp— 07)/2 = V65 . Since
the mean normal stress at P is oy =
(or+ o1+ 01 )/83 = 0, the principal devia-
tor stresses are the same as the principal
stresses.

(d) The Mohr’s circles are shown in Fig. 2-33. Fig. 2-33
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Supplementary Problems

14 7 -7
241. At point P the stress tensor is ¢; = 7 21 0. Determine the stress vector on the
-7 0 35

plane at P parallel to plane (a) BGE, (b) BGFC of the small parallelepiped shown in Fig. 2-34.

E2)

Fig. 2-34

Ans. (a) t™ = 11%€, + 128, + 98;, (b) t™ = (218, + 148, + 218)//5

242. Determine the normal and shear stress components on the plane BGFC of Problem 2.41.
Ans. oy = 63/5, o5 = 37.7/5

2.43. The principal stresses at point P are ¢ = 12, oy = 3, oipp = —6. Determine the stress vector and
its normal component on the octahedral plane at P.

Ans. t® = (128, +38,— 68,)/V3, oy = 3

2.44. Determine the principal stress values for

0 1 1 21 1
(@ o; =1 0 1 and ®) o5 = {1 2 1
1 1 0 11 2
and show that both have the same principal directions.
Ans. (@) o1 =2, opy=om=—1, W) o1 =4, oy = =1
3 —10 0
2.45. Decompose the stress tensor oy = —10 0 30 into its spherical and deviator parts and
0 30 —27
determine the principal deviator stresses. Ans. =381, sy =38, sy = —39

246. Show that the normal component of the stress vector on the octahedral plane is equal to one third
the first invariant of the stress tensor,

0 1 2
247. The stress tensor at a point is given as o3 = | 1 a9 1 | with oy, unspecified. Determine ay,
2 1 0

so that the stress vector on some plane at the point will be zero. Give the unit normal for this

traction-free plane.
A

Ans. opp = 1, N = (& — 26+ &)/\/6




76

2.48,

2.49.

2.50.

ANALYSIS OF STRESS [CHAP. 2

Sketch the Mohr’s circles and determine the maximum shear stress for each of the following
stress states:

r 7 0 r 0 0
(a) o = T T 0 (b) g = 0 —r 0
0 0 0 0 —2r

Amns. (a) gs — T, (b) ag — 3r/2

Use the result given in Problem 1.58, page 39, together with the stress transformation law (2.27),
page 50, to show that ;e qmai,0jq0,m 1S an invariant.

In a continuum, the stress field is given by the tensor

xf Xy - :cg):cl 0
oy = | (A—ad)zy (z)—3x,)/3 0
0 0 202

Determine (a) the body force distribution if the equilibrium equations are to be satisfied throughout
the field, (b) the principal stress values at the point P(q,0, 2\/3), (c¢) the maximum shear stress at
P, (d) the principal deviator stresses at P.

Ans. (a) by = —4z,, (b) a,—a, 8a, (¢) *4.5a, (d) —11la/3, —b5a/3,16a/3



Chapter 3

Deformation and Strain

3.1 PARTICLES AND POINTS

In the kinematics of continua, the meaning of the word “point” must be clearly under-
stood since it may be construed to refer either to a “point” in space, or to a “point” of a
continuum. To avoid misunderstanding, the term “point” will be.used exclusively to
_designate a 10cat10n in fixed space. The word “particle” will denote a small volumetric
element, or “material point”, of a continuum. In brief, a point is a place in space, a particle
.1s a small part of a material continuum.

3.2 CONTINUUM CONFIGURATION. DEFORMATION AND FLOW CONCEPTS

At any instant of time ¢, a continuum having a volume V and bounding surface S will
occupy a certain region R of physical space. The identification of the particles of the
continuum with the points of the space it occupies at time ¢ by reference to a suitable set of
coordinate axes is said to specify the configuration of the continuum at that instant.

The term deformation refers to a change in the shape of the continuum between some
1n1t1a1 (undeformed configuration and a sgbsequent (deformed) configuration. The emphasls
in deformation studies is on the initial and final conﬁguratlons No attention is given to

intermediate Mtlons or to the particular sequence of conﬁguratlons by which the

“deformation occurs By contrast, the word ﬂow is used to deslgnate the continuing state

‘of motion of a contlnuum Indeed, a configuration h1st0ry is inherent in flow investigations
“for which the speclﬁcatlon of a time-dependent velocity field is given.

3.3 POSITION VECTOR. DISPLACEMENT VECTOR

In Fig. 3-1 the undeformed configuratioh of a material continuum at time £=0 is
shown together with the deformed configuration of the same continuum at a later time
t = t. For the present development it is useful to refer the initial and final configurations
to separate coordinate axes as in the figure.

Lo

ES

Fig. 3-1
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Accordingly, in the initial configuration a representative particle of the continuum
occupies a point P, in space and has the position vector

X = Xlil +X2i2+ Xaia = XKiK (31)

with respect to the rectangular Cartesian axes OX,X:Xs;. Upper-case letters are used as
indices in (3.1) and will appear as such in several equations that follow, but their use as
summation indices is restricted to this section. In the remainder of the book upper-case
subscripts or superscripts serve as labels only. Their use here is to emphasize the connection
of certain expressions with the coordinates (X:X:Xs), which are called the material coor-
dinates. In the deformed configuration the particle originally at P, is located at the point
P and has the position vector

X = 1€ + 28 + 2363 = T (3.2)

when referred to the rectangular Cartesian axes oxix.x3. Here lower-case letters are used
as subscripts to identify with the coordinates (z.xsxs) which give the current position of
the particle and are frequently called the spatial coordinates.

The relative orientation of the material axes OX,X.X; and the spatial axes oxixqx; is
specified through direction cosines «,, and «,,, which are defined by the dot products of
unit vectors as

A A

A _ A _
€ L, = IK € = o T oy

(3.9)

No summ:.tion is implied by the indices in these expressions since k and K are distinct

indices. Inasmuch as Kronecker deltas are designated by the equations fx-fp = §kp and
e.* €, = 8, the orthogonality conditions between spatial and material axes take the form

U@y T Og%Kx Skp; Uppyp = Opr%py S gt (3‘/*)

In Fig. 3-1 the vector u joining the points Py and P (the initial and final positions,
respectively, of the particle), is known as the displacement vector. This vector may be
expressed as

u = ue, (8.5)
or alternatively as U=U KiK (3.6)

in which the components Ux and ux are interrelated through the direction cosines o,.
From (1.89) the unit vector & is expressed in terms of the material base vectors Ix as

A

8, = a,l, (3.7)

Therefore substituting (3.7) into (3.5),
u = (e, ) = U, = U (3.8)
from which Uy = a (3.9)

Since the direction cosines «,, are constants, the components of the displacement vector are
observed from (3.9) to obey the law of transformation of first-order Cartesian tensors, as
they should.

The vector b in Fig. 3-1 serves to locate the origin o with respect to O. From the

geometry of the figure,
u=>br+x—X (3.10)
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Very often in continuum mechanics it is possible to consider the coordinate systems
0X,X:X; and ox12225 superimposed, with b =0, so that (3.10) becomes

u=x-X (3.11)
In Cartesian component form this equation is given by the general expression
U = T — o Xy (8.12)

However, for superimposed axes the unit triads of base vectors for the two systems are
identical, which results in the direction cosine symbols «,, becoming Kronecker deltas.
Accordingly, (3.12) reduces to

u, = 2, — X, (3.13)

in which only lower-case subscripts appear. In the remainder of this book, unless specifi-
cally stated otherwise, the material and spatial axes are assumed superimposed and hence
only lower-case indices will be used.

34 LAGRANGIAN AND EULERIAN DESCRIPTIONS

When a continuum undergoes deformation (or flow), the particles of the continuum

move along various paths in space. This motion may be expressed by equations of the
form
i = xu(Xy, X, X5, 8) = (X, t) or x = x(X,?) (3.14)

which give the present location x: of the particle that occupied the point (X:X:Xs) at time
t=0. Also, (3.14) may be interpreted as a mapping of the initial configuration into the
current configuration. It is assumed that such a mapping is one-to-one and continuous,
with continuous partial derivatives to whatever order is required. The description of
motion or deformation expressed by (3.14) is known as the Lagrangian formulation.

If, on the other hand, the motion or deformation is given through equations of the form
Xi = Xi(xl, Xg, T3, t) = Xi(X, t) or X = X(X, t) (315)

in which the independent variables are the coordinates x; and ¢, the description is known
as the Eulerian formulation. This description may be viewed as one which provides a
tracing to its original position of the particle that now occupies the location (z., x, x3). If
(8.15) is a continuous one-to-one mapping with continuous partial derivatives, as was also
assumed for (3.14), the two mappings are the unique inverses of one another. A necessary
and sufficient condition for the inverse functions to exist is that the Jacobian

0x;
J = oX, (3.16)
should not vanish.
As a simple example, the Lagrangian description given by the equations
X = Xl + Xz(et— 1)
22 = Xiet—1) + X» (3.17)
Xz = Xa
has the inverse Eulerian formulation,
—x1 + xa(et — 1)
X = 11- etZ— et
zi(et—1) — a2
Xo = g (3.18)

X3 = a3
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3.5 DEFORMATION GRADIENTS. DISPLACEMENT GRADIENTS

Partial differentiation of (3.14) with respect to X; produces the tensor 9x:/90X; which is
called the material deformation gradient. In symbolic notation, 9z:i/0X; is represented by

the dyadic s s s
F = xVx = O—X)ilél + 67)262 + 6;;({363 (3.19)

in which the differential operator Vv, = %éi is applied from the right (as shown
explicitly in the equation). The matrix form of F serves to further clarify this property
of the operator V, when it appears as the consequent of a dyad. Thus

&1 0x1/0X:1 0x1/0X: 0x1/0Xs
F o= | [ 0 2 9 ] = | owo/0X: omafoXs 0wsoXs | = [0wdoX)] (3.20)

90X, X, 0Xs
X3 . 0x3/0X1 0xs/0Xs 0xa/0Xs

Partial differentiation of (3.15) with respect to x; produces the tensor 9Xi/dx; which is
called the spatial deformation gradient. This tensor is represented by the dyadic

X o 0X A 0X .

H = va = 5~x—161 + 5&;62 + (ﬁ;ea (321)
having a matrix form
Xl 6X1/6x1 6X1/6x2 6X1/6x3
d d d
Lﬂ[ = X2 [:a—xl , a—x;, (ﬁ;:' = aX2/6x1 6X2/6x2 6X2/6x3 = [aXi/ax,-] (322)
X3 6X3/6x1 aXa/aﬁfz aXa/aiL'a

The material and spatial deformation tensors are interrelated through the well-known
chain rule for partial differentiation,

ox; 0X; 9 Xi oxy
0.X; dxx ax; X,

Sk (3.23)

Partial differentiation of the displacement vector u; with respect to the coordinates
produces either the material displacement gradient ou;/0X; or the spatial displacement
gradient oui/dx;. From (3.13), which expresses u; as a difference of coordinates, these tensors
are given in terms of the deformation gradients as the material gradient

ou; __ 0xi

03X, T 3X, — 8y or J = uvgx = F—1 (3.24)
and the spatial gradient

aui _ _ GXZ — . _

;o i oz or K=uy, =1—H (3.25)

In the usual manner, the matrix forms of J and K are respectively

(uﬁ s s aur/oXy  dur/9Xy  dun/aXs
Jd = | u [O'X‘l ' 3X, m] = | oue/0X: owe/0X. Ju/dXs | = [owi/0X;] (3.26)
| U3 __J au3/6X1 6u3/6X2 6u3/6X3
and .
KN s s s du/0xr  Our/Ox:  Oui/OTs
K = Us [éa T (Tx:s:l = QU/0T1  QU/OTz  OU/OX3 = [auq-/axj] (3.27)
| Us _| 6%3/6171 au:;/ailfz 6’113/6173
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3.6 DEFORMATION TENSORS. FINITE STRAIN TENSORS

In Fig. 3-2 the initial (undeformed) and final (deformed) configurations of a continuum
are referred to the superposed rectangular Cartesian coordinate axes OX ,X:X3 and oxi1xs2s.
The neighboring particles which occupy points Py, and Qo before deformation, move to
points P and @ respectively in the deformed configuration.

XSJ Z3

XZ’ Lo
Xl» £3

Fig. 3-2

The square of the differential element of length between Py and Qo is

(@X)? = dX-dX = dXidX: = 8;dXidX; (3.28)
From (3.15), the distance differential dX; is seen to be
dX; = ‘;Xi de; or dX = H-dx (3.29)
Zj

so that the squared length (dX)? in (3.28) may be written

09X 80Xk

2 =
(dX) 0x; 9%

dz;dx; = Cidxidr;  or (dX)* = dx-C-dx (3.30)

in which the second-order tensor

90X 0Xx
0% 0%;

Cy = or € = Hc.'H (3.31)

is known as Cauchy’s deformation tensor.

In the deformed configuration, the squ/éire of the differential element of length between
P and Q is

(dx)2 = dx+dx = dx:dx; = Sijdxidxj (332)
From (3.14) the distance differential here is
_ 0x; . _ .
dx; = X, dX; or dx = F-dX (3.3%)
so that the squared length (dz)? in (3.32) may be written
0Tk OTk o
(dz)* = ani 5}—(E]_UZXWZX,- = GydX:dX; or (dz)* = dX-6-dX (3.34)
in which the second-order tensor
= 9T 0% = F.-
Gi = 3x.ox, ° © F.-F (3.35)

is known as Green's deformation tensor.
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The difference (dx)?>— (dX)? for two neighboring particles of a continuum is used as
the measure of deformation that occurs in the neighborhood of the particles between the
initial and final configurations. If this difference is identically zero for all neighboring
particles of a continuum, a rigid displacement is said to occur. Using (3.34) and (3.28),
this difference may be expressed in the form

0Lk 0k
0Xi 0.X;

(dz)? — (dX)* = ( — sﬁ> dX:dX; = 2L;dX:dX;
or (dz)? — (dX)? = dX+(F.*F— 1)-dX = dX-2Ls-dX (3.36)

in which the second-order tensor

1 /dxx 0z

L; = §<6£ﬁ%_— Sij> or Lc = %(Fc' F— |) (337)

is called the Lagrangian (or Green’s) finite strain tensor.
lr’/
Using (3.32) and (3.30), the same difference may be expressed in the form
X 0X
(dz)? — (dX)® = (si,- — Wk ax:‘) deidz; = 2By dx:de;

or (dx)? — (dX)? = dx*(1—H: H)-dx = dx-2Es-dx (3.38)
in which the second-order tensor

. —l .._anan — 1{] — H.-

E1 -_ 2 <8;] axl 'a—x:,> EA — 2(' Hc H) (3.39)

is called the Eulerian (or Almansi’s) finite strain tensor.

An especially useful form of the Lagrangian and Eulerian finite strain tensors is that
in which these tensors appear as functions of the displacement gradients. Thus if 9x:/0X;
from (3.24) is substituted into (3.37), the result after some simple algebraic manipulations
is the Lagrangian finite strain tensor in the form

_ 1 Ju; ou; Uk OUk _ 1 .
L; = 2<an tax, T ax, 37(;> or  Lg = 3 +Jde+ e ) (3.40)

In the same manner, if 0Xi/ox; from (3.25) is substituted into (3.89), the result is the
Eulerian finite strain tensor in the form

_ 1 /0w | dwy  duwk du _ .
E; = 5 <6x,-+6xi 7 axj> or Eix = #K+K.—K:*K) (3.41)
The matrix representations of (3.40) and (3.41) may be written directly from (3.26) and
(8.27) respectively.

3.7 SMALL DEFORMATION THEORY. INFINITESIMAL STRAIN TENSORS

The so-called small deformation theory of continuum mechanics has as its basic condi-
tion the requirement that the displacement gradients be small compared to unity. The
fundamental measure of deformation is the difference (dx)*>— (dX)? which may be expressed
in terms of the displacement gradients by inserting (3.40) and (3.41) into (3.36) and
(3.38) respectively. If the displacement gradients are small, the finite strain tensors in
(3.36) and (3.38) reduce to infinitesimal strain tensors, and the resulting equations represent
small deformations.
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In (3.40), if the displacement gradient components dui/9X; are each small compared to
unity, the product terms are negligible and may be dropped. The resulting tensor is the
Lagrangian infinitesimal strain tensor, which is denoted by

1 /0w | ou;
Li = §<5X—, + B—XJ,> or L = {(uvg + Vxu) = 3 +Jc) (3.42)

Likewise for ow:/ox; < 1 in (3.41), the product terms may be dropped to yield the Eulerian
infinitesimal strain tensor, which is denoted by

1(6_%- ou;

“ = 35, axi> or E = }(uv, +V, u = HK+K) (8.43)

If both the displacement gradients and the displacements themselves are small, there is
very little difference in the material and spatial coordinates of a continuum particle.
Accordingly the material gradient components du;/0X; and spatial gradient components
ou:/dx; are very nearly equal, so that the Eulerian and Lagrangian infinitesimal strain
tensors may be taken as equal. Thus

.= or L=E (3.44)

if both the displacements and displacement gradients are sufficiently small.

3.8 RELATIVE DISPLACEMENTS. LINEAR ROTATION TENSOR.
ROTATION VECTOR

In Fig. 3-3 the displacements of two neighboring
particles are represented by the vectors »{¥® and u{®”
(see also Fig. 3-2). The vector

du; = u{® —uP  or du = u® — %

(3.45)

is called the relative displacement vector of the particle
originally at @, with respect to the particle originally
at Po. Assuming suitable continuity conditions on the
displacement field, a Taylor series expansion for u{"

may be developed in the neighborhood of P,. Neglect- P,
ing higher-order terms in this expansion, the relative
displacement vector can be written as Fig. 3-3
dui = (uw/aX))p,dX; or du = (uVy)p, - dX (3.46)

Here the parentheses on the partial derivatives are to emphasize the requirement that the
derivatives are to be evaluated at point Py. These derivatives are actually the components
of the material displacement gradient. Equation (3.46) is the Lagrangian form of the
relative displacement vector.

It is also useful to define the unit relative displacement vector dui/dX in which dX is
the magnitude of the differential distance vector dX;. Accordingly if v, is a unit vector in
the direction of dX, so that dX,=v,dX, then

du; _ Ui dX] _ %i‘ d_u
T oaxyt % dx

Since the material displacement gradient du:/0X; may be decomposed uniquely into a
symmetric and an antisymmetric part, the relative displacement vector du; may be written as
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o= (L ew | owy | 1/ow o ,
dui = [:2 <6Xj + aXi> * 2 <6Xj 6Xi>] dX;
or du = [$(uvy + Veu) + Huv, — Veu)]-dX (3.48)

The first term in the square brackets in (3.48) is recognized as the linear Lagrangian strain
tensor l;. The second term is known as the linear Lagrangian rotation tensor and is
denoted by

1/ 0w ou;
Wy = §<aX1_aXJi> or W = Huvy - vyu) (3.49)

In a displacement for which the strain tensor l; is identically zero in the vicinity of point
Py, the relative displacement at that point will be an infinitesimal rigid body rotation.
This infinitesimal rotation may be represented by the rotation vector

w, = %eijkW

i

or W = }Vg Xu (8.50)

ki
in terms of which the relative displacement is given by the expression

du, = ¢w,;dX, or du = wXdX (3.51)

The development of the Lagrangian description of the relative displacement vector, the
linear rotation tensor and the linear rotation vector is paralleled completely by an analogous
development for the Eulerian counterparts of these quantities. Accordingly the Fulerian
description of the relative displacement vector is given by

ou;

du; = dx; or du = K-dx (3.52)
a7

and the unit relative displacement vector by

ou; dx; ou; du -~ ~
s dr — ol OF = uy, @ = K@ (3:59)

Decomposition of the Eulerian displacement gradient owi/dx; results in the expression
du; _ 1 dui % _1_ ou; _ ou; ] _
dr [2 <ax,- + axi> t3 <ax,- axi> dz;

or du = [§(uv, +V,u) + {uv, —V, u)] - dx (3.54)

The first term in the square brackets of (3.54) is the Eulerian linear strain tensor ¢,. The
second term is the linear Eulerian rotation tensor and is denoted by

1 /0w Qu; _
oy = §<ax,- _é?f> or Q@ = }(uy, —V, uw (3.55)

From (3.55), the linear Eulerian rotation vector is defined by

0, = %eijkwkj or o = %Vx X u (3.56)

3

in terms of which the relative displacement is given by the expression

du, = ¢ 0;dz, or du = e Xdx (8.57)

1

3.9 INTERPRETATION OF THE LINEAR STRAIN TENSORS

For small deformation theory, the finite Lagrangian strain tensor L in (3.36) may be
replaced by the linear Lagrangian strain tensor l; and that expression may now be written
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(dz)? — (dX)? = (dx—dX)(dzx +dX) = 2l;dX;dX;
or (dz)? — (dX)? = (dz —dX)(dr +dX) = dX-2L-dX (3.58)
Since dx ~ dX for small deformations, this equation may be put into the form
dr —dX dX; dX; de—dX ., A
T = lij dX'd'X—] = liivivi or ﬁr = vLy (359)

The left-hand side of (3.59) is recognized as the
change in length per unit original length of the
differential element and is called the normal strain
for the line element originally having direction
cosines dX,/dX.

When (3.59) is applied to the differential line
element PyQo, located with respect to the set of
local axes at Py as shown in Fig. 3-4, the result will
be the normal strain for that element. Because
Py Qo here lies along the X; axis,

dX,/dX = dX3/dX = 0, dX./dX =1
and therefore (3.59) becomes

dr —dX ou
—ax - le = O_Xiz (3.60) Fig. 3-4

Thus the normal strain for an element originally along the X, axis is seen to be the com-
ponent lzs. Likewise for elements originally situated along the X, and X; axes, (3.59) yields
normal strain values I and ls; respectively. In general, therefore, the diagonal terms of
the linear strain tensor represent normal strains in the coordinate directions.

Fx,

Fig. 3-5

The physical interpretation of the off-diagonal terms of l; may be obtained by a con-
sideration of the line elements originally located along two of the coordinate axes. In
Fig. 8-5 the line elements Py,Q, and Py M, originally along the X, and X, axes, respectively,
become after deformation the line elements PQ and PM with respect to the parallel set of
local axes with origin at P. The original right angle between the line elements becomes
the angle 6. From (3.46) and the assumption of small deformation theory, a first order
approximation gives the unit vector at P in the direction of @ as
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A oU1 A A ouUs A
n, = X, & + e + 9X, % (3.61)

and, for the unit vector at P in the direction of M, as

A UL A U2 A A
n; = G—X—ael + mEz + e;3 (3.62)
e R = Mam | ow
Therefore cosf = myrmy = X%, T ox, T ax, (3.63)
or, neglecting the product term which is of higher order,
U2 ous
cos 6 é—X—a + a){2 = 2l23 (364)

Furthermore, taking the change in the right angle between the elements as y,, = »/2— 9,
and remembering that for the linear theory v,, is very small, it follows that

Yoy =~ SiNy,, = sin(=z/2—69) = cosd = 2[, (3.65)

Therefore the off-diagonal terms of the linear strain tensor represent one-half the angle
change between two line elements originally at right angles to one another. These strain
components are called shearing strains, and because of the factor 2 in (3.65) these tensor
components are equal to one-half the familiar “engineering” shearing strains.

A development, essentially paralleling the one just presented for the interpretation of
the components of l; may also be made for the linear Eulerian strain tensor ¢;. The
essential difference in the derivations rests in the choice of line elements, which in the
Eulerian description must be those that lie along the coordinate axes after deformation.
The diagonal terms of ¢; are the normal strains, and the off-diagonal terms the shearing
strains. For those deformations in which the assumption [, =¢; is valid, no distinction
is made between the Eulerian and Lagrangian interpretations.

3.10 STRETCH RATIO. FINITE STRAIN INTERPRETATION

An important measure of the extensional strain of a differential line element is the
ratio dz/dX, known as the stretch or stretch ratio. This quantity may be defined at either
the point P, in the undeformed configuration or at the point P in the deformed configuration.
Thus from (3.34) the squared stretch at point P, for the line element along the unit vector
m = dX/dX, is given by

dx 2 dX1 dX A A
<EX>})0 = Afﬁl) = GijEX_dAX] or A(?;?x) = m-:‘G-m (3.6'6')

Similarly, from (3.30) the reciprocal of the squared stretch for the line element at P along
the unit vector © = dx/dx is given by

dX\? 1 dz; dx,- 1 A A
= = i1 o = b O 3.
<dx>p o i dr dz OF " n-C-n (3.67)

For an element originally along the local X, axis shown in Fig. 8-4, m=¢&, and
therefore dXi/dX = dXs/dX =0, dX,/dX =1 so that (3.66) yields for such an element

2

Agy = G = 1+ 2Ly (3.68)

2
A
(ez) *

Similar results may be determined for Afgl) and A
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For an element parallel to the x, axis after deformation, (3.67) yields the result

3 = 1 — 2E» (3.69)

A
(eg)

with similar expressions for the quantities 1/A(231) and 1/«\(233). In general, A,, is not equal

to A4,, since the element originally along the X, axis will not likely lie along the . axis
after deformation.

The stretch ratio provides a basis for interpretation of the finite strain tensors. Thus
the change of length per unit of original length is

dx —dX dx
—ax - E}—(—l = Adp — 1 (3.70)

and for the element PyQo along the X, axis (of Fig. 8-4), the unit extension is therefore

Lo = Ag,—1 = V1+2L»n—1 (3.71)

This result may also be derived directly from (3.36). For small deformation theory, (3.71)
reduces to (3.60). Also, the unit extensions L, and L, are given by analogous equations
in terms of Li; and Ls; respectively.

For the two differential line elements shown in Fig. 3-5, the change in angle y,, = =/2— 4
is given in terms of A, and A3, by

2L, B 2Ly
AdepAien \/1 +2L51/1+ 2L

sin Yos (372)

When deformations are small, (3.72) reduces to (3.65).

311 STRETCH TENSORS. ROTATION TENSOR

The so-called polar decomposition of an arbitrary, nonsingular, second-order tensor is
given by the product of a positive symmetric second-order tensor with an orthogonal second-
order tensor. When such a multiplicative decomposition is applied to the deformation
gradient F, the result may be written

Fy; = Qﬁl‘ = RuSki = TuRy; or F = R‘S = TR (373)
0X;
in which R is the orthogonal rotation temsor, and § and T are positive symmetric tensors
known as the right stretch tensor and left stretch temsor respectively.

The interpretation of (3.78) is provided through the relationship du: = (0xi/0X;) dX;
given by (3.33). Inserting the inner products of (3.73) into (3.33) results in the equations

dzi = RuaSkidX; = TwRi;dX; or dx = R:$-dX = T-R-dX (3.74)

From these expressions the deformation of dX; into dx; as illustrated in Fig. 3-2 may be
given either of two physical interpretations. In the first form of the right hand side of
(3.74), the deformation consists of a sequential stretching (by S) and rotation to be followed
by a rigid body displacement to the point P. In the second form, a rigid body translation
to P is followed by a rotation and finally the stretching (by T). The translation, of course,
does not alter the vector components relative to the axes X; and z;.
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3.12 TRANSFORMATION PROPERTIES OF STRAIN TENSORS

The various strain tensors Li;, Ey, Li; and € defined respectively by (3.97), (3.39), (3.42)
and (3.43) are all second-order Cartesian tensors as indicated by the two free indices in
each. Accordingly for a set of rotated axes X! having the transformation matrix [b;] with
respect to the set of local unprimed axes X; at point Py as shown in Fig. 3-6(a), the com-
ponents of Li; and 1 are given by

L = bypbiL,y, or L& = B-lg+B. (8.75)
and l; = bipbigla or L = B-LB. (8.76)

(a) (b)
Fig. 3-6

Likewise, for the rotated axes z/ having the transformation matrix [a;] in Fig. 3-6(b),
the components of Ef; and ef; are given by

E,=aakFE  or E{=AEiA (3.77)
and o = Q€ or FE = A-‘E-A. (3.78)

By analogy with the stress quadric described in Section 2.9, page 50, the Lagrangian
and Eulerian linear strain quadrics may be given with reference to local Cartesian coor-
dinates 5, and ¢, at the points Py and P respectively as shown in Fig. 3-7. Thus the
equation of the Lagrangian strain quadric is given by

Linm, = *h*  or n*len = =h? (3.79)

L2 $2

1

Xy, 29

Fig. 3-7
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and the equation of the Eulerian strain quadric is given by
08, = *g* or ¢ El = xg? (3.80)
Two important properties of the Lagrangian {Eulerian} linear strain quadric are:

1. The normal strain with respect to the original {final} length of a line element is
inversely proportional to the distance squared from the origin of the quadric P,
{P} to a point on its surface.

2. The relative displacement of the neighboring particle located at Qo {Q} per unit
original {final} length is parallel to the normal of the quadric surface at the point
of intersection with the line through PoQ, {PQ).

Additional insight into the nature of local deformations in the neighborhood of P, is
provided by defining the strain ellipsoid at that point. Thus for the undeformed continuum,
the equation of the bounding surface of an infinitesimal sphere of radius R is given in
terms of local material coordinates by (3.28) as

(dX)? = 8;dX:idX; = R* or (dX)? = dX-1-dX = R? (3.81)
After deformation, the equation of the surface of the same material particles is given by
3.30 .
(8.80) as (@dX)2 = Cydwidr; = R* or (dX)* = dx-C-dx = R? (3.82)

which describes an ellipsoid, known as the material strain ellipsoid. Therefore a spherical
volume of the continuum in the undeformed state is changed into an ellipsoid at P, by the
deformation. By comparison, an infinitesimal spherical volume at P in the deformed
continuum began as an ellipsoidal volume element in the undeformed state. For a sphere
of radius r at P, the equations for these surfaces in terms of local coordinates are given
by (3.32) for the sphere as

(dx)*> = 8ydaidx; = r* or (dx)? = dx-l-dx = 72 (3.83)
and by (3.34) for the ellipsoid as
(dr)? = GydXidX; = v or (dz)? = dX:-G-dX = 712 (8.84)

The ellipsoid of (3.84) is called the spatial strain ellipsoid. Such strain ellipsoids as
described here are frequently known as Cauchy strain ellipsoids.

3.13 PRINCIPAL STRAINS. STRAIN INVARIANTS. CUBICAL DILATATION

The Lagrangian and Eulerian linear strain tensors are symmetric second-order Cartesian
tensors, and accordingly the determination of their principal directions and principal
strain values follows the standard development presented in Section 1.19, page 20.
Physically, a principal direction of the strain tensor is one for which the orientation of an
element at a given point is not altered by a pure strain deformation. The principal strain
value is simply the unit relative displacement (normal strain) that occurs in the principal
direction.

For the Lagrangian strain tensor l;, the unit relative displacement vector is given by
(3.47), which may be written

=+ Wy, or D= rwys (3.85)

Calling lﬁ'A" the normal strain in the direction of the unit vector =i, (3.85) yields for pure
strain (Wi = 0) the relation A

™ = Lm; or 1™ = L-A (3.86)
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If the direction = is a principal direction with a principal strain value [, then

()
li“ —

= Ilm = lsym; or 1™

= I =10'n (3.87)
Equating the right-hand sides of (3.86) and (3.87) leads to the relationship
(lii—8ylym; = 0 or (L—1N) ‘=0 (3.88)

which together with the condition 7 =1 on the unit vectors n; provide the necessary
equations for determining the principal strain value [ and its direction cosines ni. Nontrivial
solutions of (3.88) exist if and only if the determinant of coefficients vanishes. Therefore

li—8l] =0 or |L—N| =0 (3.89)

which upon expansion yields the characteristic equation of l;, the cubic
B-—T2+ILI-III, = 0 (3.90)
where I = i = trl,  IIL = §(laly—Uily),  III. = |l = detl (8.91)

are the first, second and third Lagrangian strain invariants respectively. The roots of
(3.90) are the principal strain values denoted by la), L) and L.

The first invariant of the Lagrangian strain tensor may be expressed in terms of the
principal strains as
L =& =Ilo+le+lky (8.92)
and has an important physical interpretation. To see this, consider a differential rec-
tangular parallelepiped whose edges are parallel to the principal strain directions as
shown in Fig. 8-8. The change in volume per unit original volume of this element is called
the cubical dilatation and is given by

AV, dX,(1 + L) dXo(1 + L) dXs(1 + Lpy) — dX2dXodXs

D, = = (3.93)
VO dX] dXz dX3
For small strain theory, the first-order approximation of this ratio is the sum
Dy =l +l» +ls = L (3.94)

X

X1+ 1)

Fig. 3-8
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With regard to the Eulerian strain tensor ¢; and its associated unit relative displacement
vector e‘") the principal directions and prmmpal strain values ¢, €., €4, are determined
in exactly the same way as their Lagrangian counterparts. The Eulerian strain invariants
may be expressed in terms of the principal strains as

Le = ey Ty gy,
11 = e T € €a T €ay60) (3.95)
Ile = ;)¢ €q
The cubical dilatation for the Eulerian description is given by
AVIV. = D = ¢, + €5 + ¢4 (3.96)

3.14 SPHERICAL AND DEVIATOR STRAIN TENSORS

The Lagrangian and Eulerian linear strain tensors may each be split into a spherical
and deviator tensor in the same manner in which the stress tensor decomposition was
carried out in Chapter 2. As before, if Lagrangian and Eulerian deviator tensor com-
ponents are denoted by d;; and e;; respectively, the resolution expressions are

l I(tr L
Ly =d;+8,5 or L=Ly+ (3 ) (3.97)
I(tr E
and € = €; -+-8” 3 or E = Ep+ (g ) (3.98)

The deviator tensors are associated with shear deformation for which the cubical dilatation
vanishes. Therefore it is not surprising that the first invariants d; and e; of the deviator
strain tensors are identically zero.

3.15 PLANE STRAIN. MOHR’S CIRCLES FOR STRAIN

When one and only one of the principal strains at a point in a continuum is zero, a
state of plane strain is said to exist at that point. In the Eulerian description (the
Lagrangian description follows exactly the same pattern), if x; is taken as the direction
of the zero principal strain, a state of plane strain parallel to the z,x: plane exists and the
linear strain tensor is given by

‘1 G2 0 ‘1 62 0
& — €2 €9 0 or [eij] = €9 €9 0 (3 .99)
0 0 0 0 0

When z, and z: are also principal directions, the strain tensor has the form

¢, O 0 €, 0 0
& = 0 €5 0 or [51]'] = 0 €2 0 (3.100)
0 0 0 0 0 0

In many books on “Strength of Materials” and “Elasticity”’, plane strain is referred
to as plane deformation since the deformation field is identical in all planes perpendicular
to the direction of the zero principal strain. For plane strain perpendicular to the x; axis,
the displacement vector may be taken as a function of z;, and x; only. The appropriate
displacement components for this case of plane strain are designated by
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U1 = U(7, T2)
Uz = Uz(X1, Xe) (3.101)
us = C (a constant, usually taken as zero)

Inserting these expressions into the definition of ¢, given by (3.43) produces the plane
strain tensor in the same form shown in (3.99).

A graphical description of the state of strain at a point is provided by the Mohr’s
circles for strain in a manner exactly like that presented in Chapter 2 for the Mohr’s circles
for stress. For this purpose the strain tensor is often displayed in the form

€1 1 %‘Y12 éylg
€ij = %Y12 €92 %ng (31 02)
e e e

Here the y,; (with i - j) are the so-called “engineering” shear strain components, which are
twice the tensorial shear strain components.

The state of strain at an unloaded point on the v/2
bounding surface of a continuum body is locally . D
plane strain. Frequently in experimental studies
involving strain measurements at such a surface
point, Mohr’s strain circles are useful for reporting
the observed data. Usually three normal strains are
measured at the given point by means of a strain r o g ¢
rosette, and the Mohr’s circles diagram constructed
from these. Corresponding to the plane stress
Mohr’s circles, a typical case of plane strain diagram
is shown in Fig. 3-9. The principal normal strains

are labeled as such in the diagram, and the maxi- E
mum shear strain values are represented by points
D and E. Fig. 3-9

3.16 COMPATIBILITY EQUATIONS FOR LINEAR STRAINS

If the strain components ¢; are given explicitly as functions of the coordinates, the six

independent equations (3.43)
_ 1 6_%+61>
G T 2\ow; | o

may be viewed as a system of six partial differential equations for determining the three
displacement components . The system is over-determined and will not, in general,
possess a solution for an arbitrary choice of the strain components ¢;. Therefore if the
displacement components u; are to be single-valued and continuous, some conditions must
be imposed upon the strain components. The necessary and sufficient conditions for such
a displacement field are expressed by the equations

azeik 9%¢

0%, 0%, o
0%k O%m 0%; 0%; 0 0Lm d%: 0%k

There are eighty-one equations in all jn (3.103) but only six are distinct. These six written
in explicit and symbolic form appear as
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1 62611 + 62622 — 62612
oxy ox? 0%1 922
2 62622 + 62633 - 9 a2623
T oxl ox3 %2 0%3
3 0%egy + 62611 — 62‘31
© ot o} GEZGEN £ 2,104
or V, X EX =0 .
d Ocyy  Ogy; Oy _ 62611 * v ( :
51—1;1 a—xl :3?2 597_3 T 9% 03
F) <6€23 deg, dey _ 62522
0%s \0%1 x| Oa T 9w o
9 <<"_ 9y _ 05\ | Pey
0%s \d0x1 9dx2 Ox3 0% 0%

Compatibility equations in terms of the Lagrangian linear strain tensor l; may also be
written down by an obvious correspondence to the Eulerian form given above. For plane
strain parallel to the x,x; plane, the six equations in (8.104) reduce to the single equation

9% 92 9%

11 €2 12
2 z = 2
ox: ox 9% 0%z

or V,XEXV, =0 (8.105)

where E is of the form given by (3.99).

Solved Problems

DISPLACEMENT AND DEFORMATION (Sec. 3.1-3.5)

3.1. With respect to superposed material axes X; and spatial axes z:, the displacement
field of a continuum body is given by #1 =X, 22 =X+ AX,s 3= X3+ AX, where
A is a constant. Determine the displacement vector components in both the material
and spatial forms.

From (3.18) directly, the displacement components in material form are u;, =z, —X, =0,
Uy = Ty — Xy = AX;, uz = 23— X3 = AX, Inverting the given displacement relations to obtain
X, =%, X,= (xy—Ax;)/(1—A2), X;=(x3— Azy)/(1— A2), the spatial components of u are
U =0, uy = A(xg— Axy)/(1— A2), uy = A(xy— Axy)/(1—A2).

From these results it is noted that the originally straight line of material particles expressed
by X,=0, X,+ X;=1/(1+ A) occupies the location =z, =0, x,+ 23 =1 after displacement.
Likewise the particle line X, =0, X, = X3 becomes after displacement =z, =0, %y = x3. (Inter-
pret the physical meaning of this.)

3.2. For the displacement field of Problem 3.1 determine the displaced location of the
material particles which originally comprise (a) the plane circular surface X, =0,
X3+ X5=1/(1— A?, (b) the infinitesimal cube with edges along the coordinate axes
of length dX;=dX. Sketch the displaced configurations for (a) and (b) if A =3.
(a) By the direct substitutions X, = (x, — Axg)/(1 — A2 and X3 = (23— Axy)/(1 — A2), the circular

surface becomes the elliptical surface (1+ A2)x§ — 4Axxs + (1 + A2)x§ = (1—A42). For
A =1}, this is bounded by the ellipse 5x2 — 8x,x; + 522 = 8 which when referred to its
principal axes x} (at 45° with x;, i = 2,3) has the equation x;z + 9x§2 = 8. Fig. 3-10 below
shows this displacement pattern,
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XI+X3=4/3 Xl
Fig. 3-10 Fig. 3-11

(b) From Problem 3.1, the displacements of the edges of the cube are readily calculated. For the
edge X, = X, X, = X3 =0, u;, = u, = uz3 = 0. For the edge X, = 0 = X,, X; = X;,
U, = uz3 = 0, uy, = AX,; and the particles on this edge are displaced in the X, direction propor-
tionally to their distance from the origin. For the edge X, = X3=0, X, = X,, u, =uy, =0,
ug = AX,. The initial and displaced positions of the cube are shown in Fig. 3-11.

For superposed material and spatial axes, the displacement vector of a body is given
by u = 4X28 + X,X3& + X,X38&. Determine the displaced location of the particle
originally at (1,0, 2).

The original position vector of the particle is X =€, +2¢,;. Its displacement is u = 4¢, +4¢,
and since x = X+, its final position vector is x = 5%, + 6¢€;.

With respect to rectangular Cartesian ma-
terial coordinates X;, a displacement field is
given by U1 = '*AXzXa, U2 = AX1X3, U3 =0
where A is a constant. Determine the dis-
placement components for cylindrical spatial
coordinates x; if the two systems have a com-
mon origin.

From the geometry of the axes (Fig. 8-12) the
transformation tensor a,x = €, Ix is

cosx, sinwzy 0
apyg = | —sSinz, coszy O
0 0 1

and from the inverse form of (3.9) u, = ayxUxk. Thus
since Cartesian and cylindrical coordinates are related
through the equations X, = %, cos xy, X, = x; sinz,,
X3 = x5, equation (3.9) gives Fig, 3-12

u; = (—cos 29)AX X5 + (sin x)AX X,
= (—cos x3)A 3%, sin xy + (5in xy)Axgx, coszy = 0

uy = (sin 29) AX, X3 + (cos 2)AX X,
= (sin2 zy)Ax x5 + (cos? xy)Ax 03 = Axjxg
ug = 0

This displacement is that of a circular shaft in torsion.
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3.5.

3.6.

3.7.

3.8.

3.9.

The Lagrangian description of a deformation is given by =z = X+ Xs(e*—1),
e = Xs + Xs(e?—e72%), x;=e2X; where e is a constant. Show that the Jacobian
J does not vanish and determine the Eulerian equations describing this motion.

1 0 (e2—1)
From (3.16), J = 0 1 (e2—e™2) = e2 ¥ 0.
0 0 (e2)

Inverting the equations, X, =z, + x3(e72—1), X, = x,+ z3(e ¢ —1), X3 = e 2z,

A displacement field is given by u = X, X3& + X:X,& + X:X3€;. Determine inde-
pendently the material deformation gradient F and the material displacement gradient
J and verify (3.24), J=F—1L

From the given displacement vector u, J is found to be
X3 0 2X,X;
2X,X, X? 0
0 2X,X, X3
Since x = u+ X, the displacement field may also be described by equations =z, = X,(1 +X§),
x9 = Xp(1 +Xf), 23 = X3(1 + Xg) from which F is readily found to be
1+X5 0 2X,X,
dw,/0X; = 2X,X, 1+X% 0
0  2X,X; 1+X5

Direct substitution of the calculated tensors F and J§ into (3.24) verifies that the equation is satisfied.

A continuum body undergoes the displacement u = (8X:—4X3)& + (2X,— Xs)€ +
(4X,— X,)€;. Determine the displaced position of the vector joining particles A(1,0, 3)
and B(3, 6, 6), assuming superposed material and spatial axes.

From (3.13), the spatial coordinates for this displacement are z, = X, + 3X, —4X;, x, = 2X, +
X, — X3, 23 =—X,+4X,+ X3. Thus the displaced position of particle A is given by 2, = —11,
29 = —1, x3 =2; and of particle B, «;, = —3, xy = 6, x3 = 27. Therefore the displaced position
of the vector joining A and B may be written V = 88, + 7€, + 256,

For the displacement field of Problem 8.7 determine the displaced position of the
position vector of particle C(2,6,3) which is parallel to the vector joining particles
A and B. Show that the two vectors remain parallel after deformation.

By the analysis of Problem 3.7 the position vector of C becomes U = 8¢, + 732 + 25€; which
is clearly parallel to V. This is an example of so-called homogeneous deformation.

The general formulation of homogeneous deformation is given by the displacement
field u; = A;;X; where the A;; are constants' or at most functions of time. Show that
this deformation is such that (@) plane sections remain plane, (b) straight lines
remain straight.

(a) From (3.13), x; = Xi+ui = Xi+Ain]- = (Si]'+Aij)Xj
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According to (3.16) the inverse equations X;= (8;;+ B;;)x; exist provided the determinant
|8;;+ Aj;| does not vanish. Assuming this is the case, the material plane g;X;+ o« = 0 becomes
Bi(8;+ By)x; + « = 0 which may be written in standard form as the plane Ny +a =0
where the coefficients A; = B(8;;+ By).

(b) A straight line may be considered as the intersection of two planes. In the deformed geometry,
planes remain plane as proven and hence the intersection of two planes remains a straight line.

An infinitesimal homogeneous deformation wu:= A;;X; is one for which the coefii-
cients A;; are so small that their products may be neglected in comparison to the
coefficients themselves. Show that the total deformation resulting from two suc-
cessive infinitesimal homogeneous deformations may be considered as the sum of the
two individual deformations, and that the order of applying the displacements does
not alter the final configuration.

Let z;= (8;;+A4,)X; and w = (§;;+ Bjj)x; be successive infinitesimal homogeneous displace-
ments. Then z{ = (8;+ B;j)(8;.+ Ap)Xy = (8 + By + Ay + BjjA )X, Neglecting the higher
order product terms Bj;Aj., this becomes ] = (8, + By + Ay)X, = (8i + C; )X, which represents
the infinitesimal homogeneous deformation

w = x —X; = CypXy = By +Ap)Xx = (Ap+Bp)X = w + %

DEFORMATION AND STRAIN TENSORS (Sec. 3.6-3.9)

3.11.

3.12.

A continuum body undergoes the deformation z, = X,, s = Xo+ AX;, 23= X3+ AX,
where A is a constant. Compute the deformation tensor G and use this to determine
the Lagrangian finite strain tensor L.

From (3.35), G = F,+F and by (3.20) F is given in matrix form as

1 0 0 1 0 0
[0x;/0X;] = 0 1 A so that Gy = 0 1+A2 24
0 A 1 0 2A 1+ A2
0 0 0
Therefore from (3.37), g = i6-—1H = % 0 A2 24
0 24 A2

For the displacement field of Problem 3.11 calculate

the squared length (dx)? of the edges OA and OB, X3
and the diagonal OC after deformation for the IX
small rectangle shown in Fig. 3-13. B 2 c
Using 6 as determined in Problem 3.11 in (3.34), the X,

squared length of the diagonal OC is given in matrix 0
form by A X,

1 0 0 0
(dx)2 = [0,dX,, dX,]| 0 1+A2 24 dX, %

1
0 24 1+A42 ||dx,
Fig.3-13

= (14 A2dX,)? + 44 dX,dXy + (1+ A2)(dX,)?

Similarly for OA, (dx)? = (1+ A2)(dX,)?; and for OB, (dx)2 = 1+ A2)(dX,)2,
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3.13. Calculate the change in squared length of the line elements of Problem 3.12 and check
the result by use of (3.36) and the strain tensor Lz found in Problem 3.11.

Directly from the results of Problem 3.12, the changes are:
(@) for OC, (dx)?2 — (dX)2 = (1+ A2)(dX3+dX2) + 44 dX,dX, — (dX: + dX3)
= AdXj +dX3) + 44 dX,dX,
(b) for OB, (dz)® — (dX)2 = (1+A?)dX: — dX: = A2dX;

(¢) for OA, (dz)2 — (dX)2 (1+A2)dX; — dX; = A2dX;.

By equation (3.36), for OC
0 0 0 0

(dw)2 — (dX)2 = [0,dX,, dXs]| 0 A2 24 || dX, | = A2(dX] + dX3) + 4A dX,dX,
0 24 A2 || dx,

The changes for OA and OB may also be confirmed in the same way.

3.14. For the displacement field of Problem 8.11 calculate the material displacement
gradient J and use this tensor to determine the Lagrangian finite strain tensor L.
Compare with result of Problem 3.11.

From Problem 3.11 the displacement vector components are %, =0, u, = AX; uz3 =AX, so

that
0 0 O 0 0 o0
J = 0 0 A and J.oJ = 0 A2 0
0 A 0 0 0 A2
Thus from (3.40)
0 0 O 0 0 o 0 0 0 0 0 0
2l = 0 0 A] + [0 0 A + [0 A2 0 = 0 A2 24
0 A 0 0 A 0 0 0 A2 0 24 A2

the identical result obtained in Problem 3.11.

3.15. A displacement field is given by 2z, = X+ AX,, s =X>+ AX;, 3= X:+AX: where
A is a constant. Calculate the Lagrangian linear strain tensor L and the Eulerian
linear strain tensor E. Compare L and E for the case when A is very small.

From (3.42),
0 A 0 0 0 A 0 A A
2L = (I+3) = 0 0 A] + 14 0 O = A 0 A
A 0 0 0 A 0 A A 0

Inverting the displacement equations gives
uy, = A(A2x, +xy— Axy)/(1+ A3), uy = A(—Ax,+ A2z, + x3)/(1 + A3),
u; = Az, — Az, + A2x3)/(1 + A3)
from which by (3.43)

A2 1 -4 A2 —A 1
A 2 A 2
2E = (K+KC) = m —A A 1 + m 1 A —A
1 —-A A2 —A 1 A2
242 1—A 1—A
A
= —_— — 2 —
= |14 242 1-4

1-4 1—A 2A2

When A is very small, A2 and higher powers may be neglected with the result that E reduces to L.
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A displacement field is specified by u = X} X2& + (X: — X3)@&; + X5 X5€:. Determine
the relative displacement vector du in the direction of the —X, axis at P(1,2,-1).
Determine the relative displacements wo, — ur for €h(1,1,-1), Qx(1,3/2, —1),
Q3(1,7/4,—1) and Qu(1,15/8,—1) and compare their directions with the direction
of du.

For the given u, the displacement gradient § in matrix form is
2X,X, X2 0
[ow/0X;] = 0 1 —2X,
0 2X,X, X}
so that from (3.46) at P in the —X, direction,

4 1 0 0 -1
de) = o 1 2| -1] = |1
0 —4 4 1] 4
Next by direct calculation from w, wup = 2€ +€ —4€; and ug = & — @€ Thus
ug —up=—e —e,+ 3eg Likewise, ug —up = (—€ — & +35€)/2, ug, —up = (-9 — & +

3.75€;)/4, ug, —up = (— e, — @, + 3.8758,)/8. It is clear that as Q; approaches P the direction
of the relative displacement of the two particles approaches the limiting direction of du.

For the displacement field of Problem 3.16 determine the unit relative displacement
vector at P(1,2, —1) in the direction of Q(4,2, 3).

The unit vector at P in the direction of @ is % = 8%€,/5 + 4€;/5, so that from (2.47) and the
matrix of J as calculated in Problem 3.16,

4 1 0|35 12/5
[du/dX] = |0 1 2|l o | = | 85
0 -4 4| 45 16/5

Under the restriction of small deformation theory, L=E. Accordingly for a dis-
placement field given by u = (x; — 23)?@, + (%2 + ¥3)*€; — x12:€3, determine the linear
strain tensor, the linear rotation tensor and the rotation vector at the point P(0,2, —1).

Here the displacement gradient is given in matrix form by

2(zx, — x3) 0 —2(x; — x3)
[du/ox;] = 0 2(xg + 23)  2(zy + x3)
—xy —x, 0
which at the point P becomes
2 0 —2
[dui/ox;], = 0 2 2
-2 0 0

Decomposing this matrix into its symmetric and antisymmetric components gives

0 —2 0 0 0
[e] + [05] = 0 2 1|+
—2 1 0 0 —1 1]

Therefore from (3.56) the rotation vector «; has components «; = —1, wy = w3 = 0.
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3.19. For the displacement field of Problem 3.18 determine the change in length per unit
length (normal strain) in the direction of %= (8¢ —€,+4%¢;)/9 at point P(0,2,-1).

From (3.59) and the strain tensor at P as computed in Problem 3.18, the normal strain at P in
the direction of % is the matrix product

2 0 —2 8/9
eV = [8/9,-1/9,4/9]] 0 2 1 ||-1/9 | = —6/81
-2 1 0 4/9

3.20. Show that the change in the right angle between two orthogonal unit vectors % and &
in the undeformed configuration is given by $-2L-% for small deformation theory.

Assuming small displacement gradients, the unit vectors in the deformed directions of 3 and %
are given by (3.47) as ($ + J+7) and (% + 3+ &) respectively. (The student should check equations
(3.61) and (3.62) by this method.) Writing §-% in the equivalent form %+3J, and dotting the two
displaced unit vectors gives (as in (3.62)), cos 8 = sin(7/2—6) = siny,, = y,, or v, =[P +P-J]
[R+3-E] =% B+P-(F+3) E+P-3 34 Here J.-J is of higher order for small displacement
gradients and since 3 L &, $+& = 0 so that finally by (3.42), 7,, =%-2L-%.

3.21. Use the results of Problem 3.20 to compute the change in the right angle between
?= (88 —€+4€)/9 and &= (4e +4& —T8)/9 at the point P(0,2, 1) for the dis-
placement field of Problem 3.18.

Since L =E for small deformation theory, the strain tensor ¢; =1; and so at P

4 0 —4 4/9
You = [8/9,—1/9,4/9]| 0 4 2 4/9 | = 318/81
—4 2 0 || -9

STRETCH AND ROTATION (Sec. 3.10-3.11)

3.22. For the shear deformation # = X,, x2 = X+ AX,, X,
3= X3+ AX, of Problem 3.11 show that the F dL
stretch A 4, is unity (zero normal strain) for line F ¢
elements parallel to the X, axis. For the diagonal . dL

directions OC and DB of the infinitesimal square
OBCD (Fig. 3-14), compute A.;, and check the

; . ) . B X
results by direct calculation from the displacement 2
field.
From (3.66) and the matrix of G as determined in
Problem 3.11, the squared stretch for m =@, is Fig.3-14
1 0 0 1
2 _ -
A, = [L00]]0 1+A42 24 0 = 1
0 2A 1+ A2 0
Likewise for OC, m = (&, + €,)/V2 and so
1 0 0 0
Ala, = [0,1V2,1V2)| 0 1+42 24 |[1n2 | = (1+A)p

0 24 1+42 ] 1/V/2
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From the displacement equations the deformed location of C is =z, = 0, =z, = dL + AdL,
%3 = dL+ AdL. Thus (dx)?2 = 2(1 + A)2(dL)2 and since dX =+/2dL, the squared stretch (dz/dX)2
is (14 A)2 as calculated from (3.66).

Similarly, for DB, m = (~&, +€;)/V/2 and so Afﬁ\l) =(1—-A),
The stretch ratios A 4, and A}, are equal only if A is the deformed direction of .
For the displacement field of Problem 8.22, calculate A, for n = (& + &)/\/2 and
show that it agrees with A (2:% for the diagonal OC in Problem 3.22.

Inverting the displacement equations of Problem 3.22 one obtains

X, =z, X, = (@—Azx)/(1—A2), X, = (z3— Ax,)/(1 — A?)

from which the Cauchy deformation tensor € may be computed. Then using (3.67),

1 0 0 0
1—21— = [0,1/V2,1/V2]| 0 (1+A2)/(1—A22 —24/(1—A2? V2 | = 1—AR/(1—A2)2
n) 0 —24/(1—A22 (1+A2/1-—A422 || 12

Thus )‘?Q) = (1—A2)2/(1 —A)2 = (1+ A)2 which is identical with A(zl/'\l) calculated for OC. The
diagonal element OC does not change direction under the given shear deformation.

By a polar decomposition of the deformation gradient F for the shear deformation
=X, ®2=Xo+AX; 3= X3+ AX,, determine the right stretch tensor S together
with the rotation tensor R. Show that the principal values of S are the stretch ratios
of the diagonals OC and DB determined in Problem 3.22.

In the polar decomposition of F, the stretch tensor § =V/G; and from (3.73), R=Fs~1. By

1 0 0
(3.35), 6 =F,*F or here [Gy = | 0 1+ A2 2A . The principal axes of G are given by

0 24 1+ A2 1 0 0
a 45° rotation about X; with the tensor in principal form [G:;] =10 (1-—A4)? 0

0 0 (1+A)2

1 0 0 1 0 0
Therefore [S;] = [VG§] = |0 (1—4) o0 = |0 Aps O

0 0 (1+4) | 0 0  Acoo

Relative to the coordinate axes X;, the decomposition is
100 1 0 0
(Fi] = [Ba]lSis] = 0 1 0 0 1 A
0 0 1 0 A 1

In this example the deformation gradient F is its own stretch tensor § and R = 1. This is the
result of the coincidence of the principal axes of Ly and E, for the given shear deformation.

An infinitesimal rigid body rotation is given by % = —CX:+ BXs3, u:=CX,— AX;,
us = —BX, + AX> where A, B, C are very small constants. Show that the stretch
is zero (S = 1) if terms involving squares and products of the constants are neglected.
For this displacement,
1+C2+ B2 —AB ~AC
Gl = —AB  1+A2+C2 ~BC
—AC —BC 1+ A2+ B2
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Neglecting higher order terms, this becomes

1 0 O
Gyl = 0 10 = [VGyl = I[84
0 0 1

STRAIN TRANSFORMATIONS AND PRINCIPAL STRAINS (Sec. 3.12-3.14)

3.26. For the shear deformation #, = X1, ¥2 = X2 +V2Xs, 3= X3+1/2X, show that the
principal directions of L¢ and Esx coincide as was asserted in Problem 3.24.

0 0 0
From (3.37), [L;] = 0 1 V2 | which for principal axes given by the transformation
0 V2 1
1 0 0 0 0 0
matrix [a;] = | 0 1/V/2 1/V/2 | becomes [Lf;] =1]lo 1—v2 0
0 —1/V/2 12 0 0 1+v2
o 0 o0
Likewise from (3.39), [Ey] = |0 —1 V2 | which by the same transformation matrix [a;]
0 V2 -1
0 0 0
is converted into the principal-axes form [Ejj] = | 0 —1 -2 0 . The student should
verify these calculations.

0 0 —1++2

3.27. Using the definition (3.87), show that the Lagrangian finite strain tensor Li trans-

forms as a second order Cartesian tensor under the coordinate transformations
’
z; = bzl and Xi = b;X;.

dx) 0x
By (3.37), Ly = %(5{56—}-{5 — 8“) which by the stated transformation becomes
t 7

|

if .

L= 1 a(borxp) 0X,, d(bgewy) 0X, oy
2\ X, ToX, oX, oX; o

i

mi%ni%pa gX7 5X7 9z, 9z > (since bpkbqk = 8,0)

1/ 9z} 9x), , ,
= bmibn]' 5 axX,, BX;_ Sin = bmibnijn

l(b bs oxy, ozl d(byxy) dx;,
2

3.28. A certain homogeneous deformation field results in the finite strain tensor

1 3 -2 .
(L] = 3 1 -2 Determine the principal strains and their directions for this
-2 -2 6
deformation.

Being a symmetric second order Cartesian tensor, the principal strains are the roots of
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1-L 3 —2
3 1—-L -2 = L8 — 8L? — 4L + 32 = 0
—2 -2 6—L
Thus L, = —2, Ly, =2, L, =8. The transformation matrix for principal directions is
V2 -1V/2 o
[ay] = V3 1V3 1//3

—1/V6 —1/6 216

3.29. For the homogeneous deformation #;, = /3X,, :=2X,, 2s=1/3Xs;— X, determine
the material strain ellipsoid resulting from deformation of the spherical surface
X3+ X5+ X3 =1. Show that this ellipsoid has the form x2/A%,+ z2/A%, + 22/A%, = 1.
By (3.82), or alternatively by inverting the given displacement equations and substituting into
X;X; =1, the material strain ellipsoid is xf + xg + x;‘; + xo23 = 8. This equation is put into
the principal-axes form xf/3 + x;‘f/G + x§/2 = 1 by the transformation

1 0 0
ay] = |0 1NVZ 1//2
0 —1/V/2 12

From the deformation equations, the stretch tensor § =G is given (calculation is similar to
that in Problem 3.24) as

Vs o 0
5] = | o 331 V8-3
Y 2v/2 2V/2
V8—3 +V3+3
2v2  2v2 ]
1 0 0
which by the transformation [a;] = | 0 V/3/2 —1/2 | is put into the principal form
0 1/2 V3/2
Vi 0o o0
[s5] = | 0 V6 o
0 o0 V2

with principal stretches Afl) =3, Af2) = 6, Af3) = 2. Note also that the principal stretches may
be calculated directly from (3.66) using [a;;] above.

3.30. For the deformation of Problem 3.29, determine the spatial strain ellipsoid and show
that it is of the form A2, X7 + A% X5 £ A& X2 = 1.

By (3.84) the sphere xx; =1 resulted from the ellipsoid X-G6-X =1, or
3 0 0 X,
X, X, X5]| 0 5 —V8 || Xo| = 3X% 4+ 5X2 + 3X2 — 2y/3X,X; = 1
0 —V3 3 || X,

This ellipsoid is put into the principal-axes form 3X‘i‘ + GXg + 2X§ = 1 by the transformation

1 0 0
;] = | o V32 12

0 —1/2 /3/2
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3.31. Verify by direct expansion that the second invariant II, of the strain tensor may be
expressed by
122 l23

l11 l12

121 122

ll] l13

131 l33

11,

l32 l33

Expansion of the given determinants results in II, = I, ,lps + lpslys + lggly; — (lfg—f— l§3 + 131).
In comparison, direct expansion of the second equation of (3.91) yields

I, = L[l + leo + Lsa)lj; — (Ll + lojlo; + lgilsy)]
= %[(lll + lpg + Ig3)(lyy + lop + 133) — (Ialyy + Lighs + Ligls
+loyloy + lpoloo + loglog + Ugylay + laalas + laslas)]

= iy + loglag + lgglyy — (B3p + I + 135)

3.32. For the finite homogeneous deformation given by w: = A;X; where A;; are constants,
determine an expression for the change of volume per unit original volume. If the
A;; are very small, show that the result reduces to the cubical dilatation.

Consider a rectangular element of volume having original dimensions dX,, dX,, dX; along the
coordinate axes. For the given deformation, x; = (4;+ 8;;)X; Thus by (3.33) the original volume
dV, becomes a skewed parallelepiped having edge lengths dx; = (A, + 8iny) dX (), = = 1,2,3. From
(1.109) this deformed element has the volume dV = ¢;(4;; + 8;)(Aj2 + 8;2)(A ks + 8i3) dX; dX, d X,
Then

dv _ dVy+ AV AV

awv, = —av, = 1+ aw, = ei(An + 8:)(Ajo + 8jo)(A kg + kg
If the A;; are very small and their powers neglected,
AV/AVy = €jlAndjadis + 811 jadkg + 8118304 ks + 8:18j28ka) — 1 = Ay + Agy + Agg

For linear theory the cubical dilatation I; = 6u4;/60X;, which for wu; = AyX; is l; = A, 4+ Ag+ Ass.

3.33. A linear (small strain) deformation is specified by u, = 42, —®2+ 323, Uz = ; + Tz,
us = —3x, + 422 + 4xs. Determine the principal strains ¢, and the principal deviator
strains e, for this deformation.

Since ¢; is the symmetrical part of the displacement gradient duw;/dx; it is given here by

4 0 0 8 0 O
¢ = |0 7 2 or in principal-axes form by ¢ = [0 4 0 ). Also, ¢,/3 =5 and so the
4 0 0 3
0 2 ~1 0 0 3 0 0
strain deviator is e; = 0o 2 2 and its principal-axes form e’ikj =[]0 -1 0. Note
0 2 -1 0 0 —2

that €im) — €my ekk/3'

PLANE STRAIN AND COMPATIBILITY (Sec. 3.15-3.16)

3.34. A 45° strain-rosette measures longitudinal strain along the Z2 (3
axes shown in Fig. 3-15. At a point P, ¢, = 5 X 1074
¢, =4x107% ¢, = TX 10 *in/in. Determine the shear
strain ¢, at the point. i50

P Z,

2

By (3.59), with % = (Al—}—@z)/\/é as the unit vector in the «{
direction, Fig. 3-15
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5X107¢ ey ol]1/V2

[1/V2, 1/V/2, 0] €10 7X1074 0 || 1//2 | = 4Xx10-¢
0 0 0 0
12X 104 + 2¢,
Therefore —_— = 4X 1074 or ey = —2X10~4

3.35. Construct the Mohr’s circles for the
case of plane strain

0 0 0
e = |0 5 38
0 V3 3

and determine the maximum shear
strain. Verify the result analytically.

€S

With the given state of strain referred
to the z; axes, the points B(egs = 5, 93 = V/3)
and D are established as the diameter of the
larger inner circle in Fig. 38-16. Since D
€1y = 0 is a principal value for plane strain,
the other circles are drawn as shown.

A rotation of 30° about the #, axis E
(equivalent to 60° in the Mohr’s diagram)
results in the principal strain axes with the
principal strain tensor e’fj given by Fig. 3-16
1 0 0 0 0 0 1 0 0 0 0 0
0 V32 120 5 V3|lo V32 —12| = [0 6 0
0 —1/2 Vs3/2 |lo Vs 3 |lo 1/2 V32 0 0 2

Z3

30°

Lo

£21
Fig. 3-17 Fig. 3-18

Next a rotation of 45° about the x5 axis (90° in the Mohr diagram) results in the x; axes and
the associated strain tensor ¢/; given by

1ve 12 olfo o oll1nvZ ~1/V2 o 3 30
V2 V2 ollo 6 of[1/V2Z 1/V2 o] = |3 30
0 0 1]/0o 0 2 0 0o 1 0 0 2

the first two rows of which represent the state of strain specified by point F' in Fig. 3-16. Note
that a rotation of —45° about x} would correspond to point E in Fig. 3-16.
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3.36. The state of strain throughout a continuum is specified by
x X xs

€, = x5 xs X8
xxs x5

Are the compatibility equations for strain satisfied?

Substituting directly into (3.104), all equations are satisfied identically. The student should
carry out the details.

MISCELLANEOUS PROBLEMS

3.37. Derive the indicial form of the Lagrangian finite strain tensor L, of (3.40) from its
definition (3.37).

From (3.24), dx;/0X; = 8;;+ 0u;/0X;. Thus (3.37) may be written

1 duy auy,
LiJ’ = E i Ski + :93(_1 skj + erJ - (Sij:l

Uy s duy, ouy, duy,
=3 81i8y; + skié—}?; + kjé'X—i + B—X-IEX; — &

du; duy duy Buk:l
[0X;  oX;  0X,0X;

3.38. A displacement field is defined by # = X, — CX:+ BX;, 2z, = CX,+ X2 — AX;,
23 = —BX, + AX: + Xs. Show that this displacement represents a rigid body rotation
only if the constants A, B, C are very small. Determine the rotation vector w for the
infinitesimal rigid body rotation.

1 -C B
For the given displacements, F = cC 1 -A and from (3.37),
—B A 1
B24+(C2 —AB —-AC
e = % ~AB  A?+C* -BC
—AC —~BC A2+ B2

If products of the constants are neglected, this strain tensor is zero and the displacement reduces
to a rigid body rotation. From (3.50), the rotation vector is
A A A
€, €y €;
w o= % a/0X, 8/0X, 0/8X 4 = A@ + B&, + Cég
~CX,+BX; CX,—AX; —BX,+AX,

3.39. For the rigid body rotation represented by wu, = 0.02X; wu: = —0.08X; wus =
—0.02X; + 0.03X,, determine the relative displacement of Q(3,0.1,4) with respect to
P(3,0,4).

From the displacement equations, uy, = .08€; —.128,—.0578; and up = .08¢, —.128, — .06 €,
Hence du = Ug— Up = —.0038;. The same result is obtained by (2.51), with w = .038; +.028,:
& & &
du = [.08 .02 0 = -—.003%¢,
0 1 0




106 DEFORMATION AND STRAIN [CHAP. 3

3.40. For a state of plane strain parallel to the x.x; axes, determine expressions for the
normal strain ¢;, and the shear strain ¢;, when the primed and unprimed axes are

oriented as shown in Fig. 3-19.

By equation (3.59),

0o 0 0 0
g2 = [0,cos0,sin6]} 0 ey e || coss
0 €3 €33 || sing

= €g9 0820 + 2ep38iN6 coSO + €35 sin26

€33 + €33 €9 — €33 .
) + 5 cos 20 + ey3 sin 29

Similarly from (3.65) and Problem 3.20,

0o 0 0 0
&3 = [0,cos0,s8in6]| 0 ey eg || —sing
0 €3 €33 cos 8
= =gy 8iN G cOS O + ey3 c0828 — eggsin2e + g5 sin 6 cos e
€22 T €33
= ez cos20 — —5  sin 26
x
x;; xg E 3
C
[} le
[
0 0 B
% : ; T2
D
oA ?
£31
Fig. 3-19 Fig. 3-20

3.41. For a homogeneous deformation the small strain tensor is given by

0.001 —0.005 0
] = |-0005 002 0.01
0 001 —0.03

What is the change in the 90° angle ADC depicted by the small tetrahedron OABC
in Fig. 3-20 if OA = OB = OC, and D is the midpoint of AB?

The unit vectors $ and & at D are given by 3 = (&, ~€,)/V/2 and % = (26, —€,—¢,)/V/6. From
the result of Problem 3.20,
02 —01 o |[-1/v6
Y = [VZ,-1Z,0]] —01 .04 .02 | ~1V6 | = —.01//3
0 .02 —.06 2/V6
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5 -1 -1

3.42. At a point the strain tensor is given by ¢ = |—1 4 0| and in principal form
6 0 0 -1 0 4

by & = [0 4 0]. Calculate the strain invariants for each of these tensors

0 0 3
and show their equivalence.
By (3.95) and Problem 831, I; = 5+4+4 = 13, I;« = 64+4+ 8 = 138. Likewise II;

194+ 19416 = 54, II.. = 24+ 18+ 12 = 54. Finally IIT, = 5(16) —4—4 = 72, Ill.
(6)(4)(8) = 72. The student should check these calculations.

I

3.43. For the displacement field z, = X1+ AX;, 22 = Xo— AXs, 23 = X3 — AX, + AX,,
determine the finite strain tensor Ls. Show that if A is very small the displacement
represents a rigid body rotation.

Since u, = AX3, uy = —AX; uy=-—AX,+AX,, by (3.40),

0 0 A 0 0 —A A2 ~A2 A2 —A2 0
2l = 0 0-A | + [0 o A| 4+ [—-42 A2 o0 = |—-A2 A2 o
~A A 0 A —-A 0 0 0 242 0 0 242

If A is small so that A2 may be neglected, L; = 0; and by (3.50) the rotation vector w=A4 3, +A%,

3.44. Show that the displacement field u, = Az, + 8%, u: = 32, — Bx2, us =5 gives a state
of plane strain and determine the relationship between A and B for which the
deformation is isochoric (constant volume deformation).

A 3 0
From the displacement equations, by (3.43), ¢; = | 3 —B 0 which is of the form of
0 0 0

(3.99). From (3.96), the cubical dilatation is D =¢; = A — B, which is zero if A = B.

3.45. A so-called delta-rosette for measuring longitudinal xy xg e
surface strains has the shape of the equilateral
triangle A and records normal strains e e/, in 60°
the directions shown in Fig. 3-21. If ¢, =a, ¢ = b, 60°
e!" = ¢, determine ¢, and ¢,, at the point. 2
By (3.59) with L =E, for the x; direction, Fig. 3-21
a ep 0 |[ 1/2]
[1/2,V3/2,0] | e e O |[V3/2 | = b or 2V3ep + 3¢y = 4b— a
0 0 0 0

Also for the «{ direction

a ep 0] —1/27]
[~1/2,V3/2,0] | e1p e O [|V3/2| = ¢ or —2V3ey + 3y = 4c—a

o o oL o |

Solving simultaneously for €, and ey, yields e = (b— ¢)/V3 and €90 = (—a + 2b + 2¢)/3.
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3.46.

3.47.

3.48.

3.49.

3.50.

DEFORMATION AND STRAIN [CHAP. 3
Derive equation (3.72) expressing the change in angle between the coordinate direc-
tions X» and X3 under a finite deformation. Show that (3.72) reduces to (3.65) when
displacement gradients are small.
Let y53 = #/2—6 be the angle change as shown in Fig. 3-5. Then sin yy5 = cos (7/2 — 6) =
n,- Mg, or by (3.23) and (3.34)
) dx, dxg dX,F,+F+dX,
sinyyy = ——+¢— =
|dxg| [duxs| VX, -6 dX, VdX, - G- dX,
Now dividing the numerator and denominator of this equation by |dX,| and [dX;| and using (3.35)
and (3.66) gives N N N N
. 6.8 68
S e = T oy ta,
\/e2-6-32 \[33-6-83 @) 2
Next from (3.37), €,°6G*€; = 8 (g +1)-€; = 8,218 + €1 +8; = 2L,; since €, = 0.
Also from (3.68), Ag, = V1+ 2L,,, etc., and so
. 2Ly3
SInysg =
V1 + 2Ly V1 + 2L,
3 dun/0X 5 + dug/0Xy + (91/0X 2) (9] X 5)
V1 F 20uy/0X, + (9, /0 X 2)(0ur/3Xs) V1 + 20us/0X g + (0ui/9X 5) 01,/ X 3)
If 6u;/0X; <1 this reduces to sinyss = duy/0X3 + duz/dX, = 2l
For the simple shear displacement z, =X,, #2 =X, x3= X3+ 2X2/\/{_-3, determine
the direction of the line element in the X.X; plane for which the normal strain is zero.
Let m = m,€, + m3€,; be the unit normal in the direction of zero strain. Then from (3.66),
since A2 A =1,
m)
1 0 0 0
[0, mp, ma] | O /8 2/V3 || M| = 1
0 2/V3 1 ma
or 7m§ + 4\/§ Momsg + 3m§‘ = 3. Also mg + mg = 1, and solving simultaneously m, = +V/3/2,
my = ¥1/2, or my =0, my = *1. Thus there is zero strain along the X, axis and for the element
at 60° to the X; axis.
The student should verify this result by using the relation m* 2lg* m =0 derived from (3.36).
Supplementary Problems
For the shear displacement of Problem 3.47, determine the equation of the ellipse into which the
circle X3 +X; =1 is deformed. Ans. :cg +9a2 =3
Determine the shear angle y,; for the deformation of Problem 3.47 3
(Fig. 3-22).  Ams. yp3 = sin—12/y/7 X3
Given the displacement field =, = X, +2X; 2,=X,—2X;, z;=
X;—2X,+2X,, determine the Lagrangian and Eulerian finite strain
tensors L; and E,. o3
2 -2 0 2 -2 0
— _ 1 .
Amns. LG = —2 2 0 N EA = 9 2 2 0 X2

0 0 4 0 0 4 Fig. 3-22
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3.51.

3.52.

3.53.

3.54.

3.55.

3.56.

3.57.

3.58.

3.59.

3.60.

3.61.

Determine the principal-axes form of the two tensors of Problem 3.50.

4 0 0 4/9 0 0
Ans. 1z =0 0 o], Ef = 0 0 0
0 0 4/9

For the displacement field of Problem 3.50 determine the deformation gradient F, and by a polar
decomposition of F find the rotation tensor R and the right stretch tensor s.

2 1 2 2 -1 0 1 0 2
Ans. R = % 1 2-2, s=1|-1 2 0/, F= 0 1 -2
-2 2 1 0 o0 3 -2 2 1

Show that the first invariant of L; may be written in terms of the principal stretches as

— (A2 — 2 _ 2 o g ;
‘ILG KA(SI) 1)+(A(32) 1)+(A(€3) 1)]/2. Hint: See equation (3.68).

1 -3 2

The strain tensor at a point is given by ¢; = | —3 1 —V2 |. Determine the normal strain
V2 -2 4

in the direction of % = €,/2 —€,/2 + €/V2 and the shear strain between 7 and & = —,/2 +

82/2 +33/\/§. Amns. E(l’l\) = 6, .YVU» = 0.

Determine the principal-axes form of ¢; given in Problem 3.54 and note that ? and & of that
problem are principal directions (hence y,, = 0).

6 0 0
Amns. € = 0 2 0
0 o0 —2

Draw the Mohr’s circle for the state of strain given in Problem 3.54 and determine the maximum
shear strain value. Verify this result analytically. Ans. ymax = 4

Using ¢; of Problem 3.54 and e’i"j given in Problem 38.55, calculate the three strain invariants from
each and compare the results. Ans. I =6, Il = —4, III; = —24.

For ¢; of Problem 8.54, determine the deviator tensor e;; and calculate its principal values.
-1 -3 V2 4 0 0

Ams. e = | -3 -1 —VE|, e = [0 0 o
V2 =z 2 0 0 —4

A displacement field is given by u, = 3x1x§, Uy = 2x3%,, Uug = x?, — x,%5. Determine the strain
tensor ¢; and check whether or not the compatibility conditions are satisfied.

313 3z, 2y + 23 —xy/2
Ans. e; = | 3xxy+ag ] z,/2 |, Yes.
—x,y/2 %,/2 224

For a delta-strain-rosette the normal straing
are found to be those shown in Fig. 3-23.
Determine €5 and ¢, at the location.

Ans. e =1X 1074, ¢, = —0.2885 X104 ey =1x10-4 ) = 15X 104

For the displacement field =z, = X, +AXj;,
29 = Xy, z3 = X3—AX,, calculate the vol-
ume change and show that it is zero if A
is a very small constant. Fig. 3-23

€1 = 2X104



Chapter 4

Motion and Flow

41 MOTION. FLOW. MATERIAL DERIVATIVE

Motion and flow are terms used to describe the instantaneous or continuing change in
configuration of a continuum. Flow sometimes carries the connotation of a motion leading
to a permanent deformation as, for example, in plasticity studies. In fluid flow, however,
the word denotes continuing motion. As indicated by (3.14) and (8.15), the motion
of a continuum may be expressed either in terms of material coordinates (Lagrangian
description) by '

X = xi(Xl,Xz,Xg, t) = (X, t) or x = x(X, t) (41)
or by the inverse of these equations in terms of the spatial coordinates (Eulerian description)
as

Xi = Xi(xly L2, X3, t) = Xi(X, t) or X = X(X, t) (4'2)
The necessary and sufficient condition for the inverse functions (4.2) to exist is that the
Jacobian determinant

J = |ox/0X] (4.3)
should not vanish. Physically, the Lagrangian description fixes attention on specific
particles of the continuum, whereas the Eulerian description concerns itself with a particu-
lar region of the space occupied by the continuum.

Since (4.1) and (4.2) are the inverses of one another, any physical property of the con-
tinuum that is expressed with respect to a specific particle (Lagrangian, or material descrip-
tion) may also be expressed with respect to the particular location in space occupied by the
particle (Eulerian, or spatial description). For example, if the material description of the

density p is given by
p = p(Xipt) or p = p(X,1) (4-4)

the spatial description is obtained by replacing X in this equation by the function given
in (4.2). Thus the spatial description of the density is

p = p(Xilx,1),8) = p*@,t) or p = p(X(x,1),t) = p¥(x,1) (4.5)

where the symbol p* is used here to emphasize that the functional form of the Eulerian
description is not necessarily the same as the Lagrangian form.

The time rate of change of any property of a continuum with respect to specific particles
of the moving continuum is called the material derivative of that property. The material
derivative (also known as the substantial, or comoving, or convective derivative) may be
thought of as the time rate of change that would be measured by an observer traveling
with the specific particles under study. The instantaneous position «; of a particle is itself
a property of the particle. The material derivative of the particle’s position is the instan-
taneous velocity of the particle. Therefore adopting the symbol d/dt or the superpositioned
dot (*) as representing the operation of material differentiation (some books use D/Dt), the
velocity vector is defined by

vi = da/dt = & or v = dx/dt = x (4.6)

110
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In general, if Py .. is any scalar, vector or tensor property of a continuum that may be
expressed as a point function of the coordinates, and if the Lagrangian description is

given by
Py;... = Py (X,?) (4.7)

the material derivative of the property is expressed by

dP; .. 0Py . (X,t)
dt N ot (4.8)

Q&J_GT()E’_Q} to emphasize that the
x

X coordinates are held constant, i.e. the same particles are involved, in taking the derivative.
When the property P;;... is expressed by the spatial description in the form

The right-hand side of (4.8) is sometimes written [

Py = Py  (x,1) (4-9)
the material derivative is given by
dP;. . (x,t) _  oPy . (x,1) P, (x,1) dax
dt = at T T em dt (4.20)

where the second term on the right arises because the specific particles are changing position
in space. The first term on the right of (4.10) gives the rate of change at a particular
location and is accordingly called the local rate of change. This term is sometimes written

oP;.. .(x,1)
[
on the right in (4.10) is called the convective rate of change since it expresses the contribu-
tion due to the motion of the particles in the variable field of the property.

] to emphasize that x is held constant in this differentiation. The second term

From (4.6), the material derivative (4.10) may be written

. olt(x b - ]at(x Lt i]axfcx : (4.11)
which immediately suggests the introduction of the material derivative operator
d _ 9 d i - i .
a = 3 + Veo o OF g = + vV, (4.12)

which is used in taking the material derivatives of quantities expressed in spatial coordinates.

42 VELOCITY. ACCELERATION. INSTANTANEOUS VELOCITY FIELD

One definition of the velocity vector is given by (4.6) as v; = dai/dt (or v = dx/dt). An
alternative definition of the same vector may be obtained from (3.11) which gives »: = wi+ X;
(or x = u+X). Thus the velocity may be defined by

_ do _ dwi+Xi)  duw _dx _ du+X) du

BWE G T T a e Y YT @ T T ar T dt

since X is independent of time. In (4.13), if the displacement is expressed in the Lagrangian
form w = u(X,?), then

_ g o Xt Xty o duXY)

wEWME g T T et dt

(4.13)

ou(X, t)
ot

(4.14)
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If, on the other hand, the displacement is in the Eulerian form w = ui(x,?), then

vi(x,t) = w(x,t) = du(;(;(, ) aui((;;’ £) + vk(x, 1) au(;gi’ £)
or viot) = dxy = oD o D e g ue (4.15)

In (4.15) the velocity is given implicitly since it appears as a factor of the second term on
the right. The function
vi = vi(x,f) or v = v(x,t) (4.16)

is said to specify the instantaneous velocity field.

The material derivative of the velocity is the acceleration. If the velocity is given in
the Lagrangian form (4.14), then

Cdu(X,t) _ vdX,t) . _ dv(X 1) av(X, ¢

a; E v = di = 5t or a=yv = di = o (4.17)

If the velocity is given in the Eulerian form (4.15), then

dvix, t dvi(x, T ovi(x, t
ai(x,t) = t(it ) _ ((;; ) + vk(x,t) a(xk )
or a(x,?) = d—v%’ﬁ = Q% + v(x, t) * V, v(x,t) (4.18)

43 PATH LINES. STREAM LINES. STEADY MOTION

A path line is the curve or path followed by a particle during motion or flow. A
stream line is the curve whose tangent at any point is in the direction of the velocity at that
point. The motion of a continuum is termed steady motion if the velocity field is independent
of time so that dv;/0t = 0. For steady motion, stream lines and path lines coincide.

44 RATE OF DEFORMATION. VORTICITY. NATURAL STRAIN INCREMENTS

The spatial gradient of the instantaneous velocity field defines the welocity gradient

tensor, ovi/dx; (or Yi;). This tensor may be decomposed into its symmetric and skew-
symmetric parts according to

o aw _ Lfew aw) , 1(%w v _opo o
Yy = or; 2<ax,~+axi> + 2<ax,~ axi> = Dy + Vi
or Y = 3(VV, + V, V) + $(VV, -V V) = (D+V) (4.19)
This decomposition is valid even if v; and dv:/dz; are finite quantities. The symmetric tensor
o — p. = L{ovi 9 -1
Dy = D; = 5 <ax,~ + axi> or D = §(vv, +V,V) (4.20)

is called the rate of deformation tensor. Many other names are used for this tensor; among

them rate of strain, stretching, strain rate and velocity strain tensor. The skew-symmetric
tensor

1/0v: Ov;
Vi = Vi = 5 <5§,-Fax]i> or V = §vv,—V,V) (4.21)

is called the vorticity or spin tensor.
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The rate of deformation tensor is easily shown to be the material derivative of the
Eulerian linear strain tensor. Thus if in the equation

dey  1d [ow = duy dE 1d
ij_ 1@ i ol ¢k _ 1o
dt ~ 2df <ax,~ axi> or g Tag WVx VW (4-22)

the differentiations with respect to the coordinates and time are interchanged, i.e. if

d /ow)\ . 9 /[du; .
7t <a_x,> is replaced by 5z, <W> , the equation takes the form
de,; 1/0vi  ov; dE
@ =3t ~ D or G MYtV =D 23

By the same procedure the vorticity tensor may be shown to be equal to the material
derivative of the Eulerian linear rotation tensor. The result is expressed by the equation

do,; ‘ ;
ij 1<6v1 _%) — Vij or “11_‘; = %(va—vx v) =V (4,24)

dt 2 axj ox;

A rather interesting interpretation may be attached to (4.23) when that equation is

rewritten in the form
de; = D dt  or dE = Ddt (4.25)

The left hand side of (4.25) represents the components known as the natural strain incre-
ments, widely used in flow problems in the theory of plasticity (see Chapter 8).

4.5 PHYSICAL INTERPRETATION OF RATE OF DEFORMATION
AND VORTICITY TENSORS

In Fig. 4-1 the velocities of the neighboring
particles at points P and @ in a moving continuum
are given by v: and v + dv; respectively. The
relative velocity of the particle at @ with respect
to the one at P is therefore

dv;

dv: = 0x;

dx; or dv = vV, +dx (4.26)

in which the partial derivatives are to be evalu-
ated at P. In terms of Di; and Vi, (4.26) becomes

dvi = (Dy+ Vi) d;

or dv = (D+V)-dx (4.27) Fig. 4-1

If the rate of deformation tensor is identically zero (D = 0),
dvi = Vij dxj or dv = V-dx (4.28)

and the motion in the neighborhood of P is a rigid body rotation. For this reason a velocity
field is said to be irrotational if the vorticity tensor vanishes everywhere within the field.

Associated with the vorticity tensor, the vector defined by
9, = €V.; O q@=V,Xv (4.29)

is known as the vorticity vector. The symbolic form of (4.29) shows that the vorticity
vector is the curl of the velocity field. The vector defined as one-half the vorticity vector,
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Q = 3q, = ¢, v, or Q= dq =}V, Xv (4.30)

is called the rate of rotation vector. For a rigid body rotation such as that described by
(4.28), the relative velocity of a neighboring particle separated from P by dx; is given as

dv, = ¢,@,dz, or dv = QXxdx (4-31)

i ik
The components of the rate of deformation tensor have the following physical interpreta-

tions. The diagonal elements of D;; are known as the stretching or rate of extension com-
ponents. Thus for pure deformation, from (4.27),

dv, = D,dx; or dv = D-dx (4.32)
and, since the rate of change of length of the line element dx; per unit instantaneous length
is given by P d

v Vi Xj v A
di” = de — Di;’d—x] =Dy, or d7V=D-3 (4.33)

the rate of deformation in the direction of the unit vector v, is

d = d;")vi = D. v.v, or d = ?'D';‘ (4.3/})

71
From (4.34), if v, is in the direction of a coordinate axis, say €2,
d = dzz or d = 82' D'ez = Dzz (/#.35)

The off-diagonal elements of D;; are shear rates, being a measure of the rate of change
between directions at right angles (See Problem 4.18).

Since D;; is a symmetric, second-order tensor, the concepts of principal axes, principal
values, invariants, a rate of deformation quadric, and a rate of deformation deviator tensor
may be associated with it. Also, equations of compatibility for the components of the rate
of deformation tensor, analogous to those presented in Chapter 3 for the linear strain
tensors may be developed.

46 MATERIAL DERIVATIVES OF VOLUME, AREA AND LINE ELEMENTS

In the motion from some initial con-
figuration at time ¢=0 to the present x3, X3
configuration at time ¢, the continuum
particles which occupied the differential
volume element dV, in the initial state
now occupy the differential volume ele-
ment dV. If the initial volume element is
taken as the rectangular parallelepiped
shown in Fig. 4-2, then by (1.10)

dv = Xmé‘l X dXzez'ngeg
= dX1dX,dX; (4.36')

Due to the motion, this parallelepiped is 72 Xa

moved and distorted, but because the

motion is assumed continuous the volume

element does not break up. In fact,

because of the relationship (3.33), dx; =

(02:/0X;) dX; between the material and @1, Xy

spatial line elements, the “line of particles” Fig. 4-2
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that formed dX; now form the differential line segment dx{" = (92:/6X:)dX;. Similarly
dX; becomes dx{® = (9x:/0X2)dX, and dX; becomes dx{’ = (92:/0Xs)dXs. Therefore the
differential volume element dV is a skewed parallelepiped having edges dx{", dz(®, dz(® and
a volume given by the box product

dV = dx® X dx® - dx® = ¢ do{’dz® da® (4-37)
But (4.87) is seen to be equal to

a_xi_ 0x; 0x
“iik 90X, 06X, 0Xs

where J = |0xi/0X;| is the Jacobian defined by (4.3).

av =

dX1dX,dX;s = JdV, (£.38)

Using (4.88), it is now possible to obtain the material derivative of dV as

d d dJ

since dV) is time independent, so that (% (dVo) = 0. The material derivative of the Jacobian
J may be shown to be (see Problem 4.28)

dJ _ ov; . .
- ng or J =Jv_ v (4.40)
and hence (4.39) may be put into the form
d 6’2){ d
at av) = o dV  or at (@avy) = v, +vdv (4.41)

For the initial configuration of a continuum, a differential element of area having the
magnitude dS°® may be represented in terms of its unit normal vector n; by the expression
» dS°n;. For the current configuration of the continuum in motion, the particles initially
making up the area dS°n; now fill an area element represented by the vector dSn; or dS;. It
may be shown that

ds: = J%‘;(; dX; or dS = JdX-XvV, (4.42)
from which the material derivative of the element of area is
d i i 0X; o d0v; o 0v; )
at dSi) = 7 <J axi> dX; = s das;: e as; (4.43)

The material derivative of the squared length of the differential line element dx: may
be calculated as follows,

d _d N d(dxz:) .
ai (dx?) = ai (dxidxs)y = 2 7 dx; (4.44)
However, since dx; = (0x:/0X;) dX;,
d _d [ _ 9 o 0vi 9 o oy
it (dx;) = E(aX]) aX; = 3X; dX; = 5x 5X; aX; = Fr. dxx (4-45)
and (4.44) becomes
d dv; d
E(daﬁ) =2 o dx.dx; or E(dxz) = 2dx-V, v-dx (4.46)

The expression on the right-hand side in the indicial form of (4.46) is symmetric in ¢ and %,
and accordingly may be written

dv; 0V
oz drydr; + 3,

_ ov: | OVk )
dr;dx, = <axk+axi>dxldxk (4.47)
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or, from (4.20),

(%(daﬁ) = 2Dydwidz;  or (%(daﬁ) = 24dx-D-dx (4.48)

4.7 MATERIAL DERIVATIVES OF VOLUME, SURFACE AND LINE INTEGRALS

Not all properties of a continuum may be defined for a specific particle as functions of
the coordinates such as those given by (4.7) and (4.9). Some properties are defined as
‘integrals over a finite portion of the continuum. In particular, let any scalar, vector or
tensor property be represented by the volume integral

Py (t) = fv P} (x,t)dV (4.49)

where V is the volume that the considered part of the continuum occupies at time £. The
material derivative of P . (%) is '

(%[Pii-v-(t)] = g—tfv P, (x,t)dV (4.50)

and since the differentiation is with respect to a definite portion of the continuum (i.e. a
specific mass system), the operations of differentiation and integration may be interchanged.
Therefore

d ® d
Efv Pi. . (x,t)dV = fv 77 [P (%, 1) dV] (4.51)
which, upon carrying out the differentiation and using (4.41), results in
d { p - [M o) 2]
3, P (x,5)dV = , it + Py (x,1) 5, av (4.52)

Since the material derivative operator is given by (4.12) as d/dt = 9/t + v, 9/0xp, (4.52)
may be put into the form

d oPs.  (x,t 9
e fv Ph (x,t)dV = j; [—’—a;"—)Jréx—p(va?}...(x,t))] av (4.53)

By using Gauss’ theorem (1.157), the second term of the right-hand integral of (4.53) may
be converted to a surface integral, and the material derivative then given by

d oP%. . (x,t
a fv Pi . (x,0)dV = fv i D gy 4 fs 0[P} (x. )] 45, (4.54)

This equation states that the rate of increase of the property Pi...(¢) in that portion of the
continuum instantaneously occupying V is equal to the sum of the amount of the property
created within V plus the flux vp[P?;,,,(x, t)] through the bounding surface S of V.

The procedure for determining the material derivatives of surface and line integrals is
essentially the same as that used above for the volume integral. Thus for any tensorial
property of a continuum represented by the surface integral

Qy...(0) = j;Q?}.,,(x,t) ds, (4.55)

where S is the surface occupied by the considered part.of the continuum at time ¢, then, as
before,

d sk & ,
EL Qi..(x,H)dS, = L % [Qij...(x,t) dSy] (4.56)
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and, from (4.43), the differentiation in (4.56) yields
dQi...(t) _ f[dQZ‘;,.,(x,t) IWq ] —f x Oy
s = ) [Pl e e wnas, - f e ras]  wan)

For properties expressed in line integral form such as

Ro ) = f Ri.(ct)da, (459
c
the material derivative is given by
d d
7t j; R (x,t)dx, = fc d—t[R?}m(x,t)dx,,] (4.59)

Differentiating the right hand integral as indicated in (4.59), and making use of (4.45),
results in the material derivative

(B (0] = de, + | S®[RE (x, )] daq (4.60)

dt (o) axq

Solved Problems

MATERIAL DERIVATIVES. VELOCITY. ACCELERATION (Sec. 4.1-4.3)

4.1. The spatial (Eulerian) description of a continuum motion is given by =z = Xiet +
Xs(eft—1), x2 = Xa(e'—e™f) + X, 23 = X3, Show that the Jacobian J does not vanish
for this motion and determine the material (Lagrangian) description by inverting the
displacement equations.

By (4.3) the Jacobian determinant is
et 0 et—1
J = |ox/oX;] = |0 1 et—e7t] = et
0 0 1

Inverting the motion equations, X; = zje~t+ x3(e"t—1), X, = x5 — 25(et —e~Y), X3= x3.
Note that in each description when t =0, z; = X,

4.2. A continuum motion is expressed by z:1=X;, x> = e{(X:+ X1)/2 + e {(X:—X5)/2,
x3 = X2+ X35)/2 — e 4 X2 — X3)/2. Determine the velocity components in both their
material and spatial forms.

From the second and third equations, X, + X; = e t(xy+x3) and X, — X3 = ef(xy,— x3).
Solving these simultaneously the inverse equatjons become X; = z;, X, = e tzy+ z4)/2 +
et(zy —x5)/2, X3 = e Ywy+ x3)/2 — et(xy — x3)/2. Accordingly, the displacement components u; =
z; — X; may be written in either the Lagrangian form u; = 0, uy, = et(X, + X3)/2 + e~ t(X, — X3)/2 —
Xy, uy = e(Xy+ X3)/2 — e t(Xy;—X3)/2 — X3, or in the Eulerian form u; = 0, uy = =z, —
e~ Hxy + 3)/2 — et(xy — 23)/2, uy = x5 — e Uy + 25)/2 + et(zy — x5)/2.

By (4.14), v; = 0u;/9t = 9X;/0t and the velocity components in Lagrangian form are v, =0,
vy = et(Xy+ X3)/2 — e~ HXy — X3)/2, vy = ef(X,+ X3)/2 + e~ (X, — X3)/2. Using the relationships
Xy + X3 = e Y+ 23) and X, — X3 = ef(xy —23) these components reduce to v, = 0, v, = 3,
V3 = Xo.
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4.5.

4.6.

4.7.
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Also, from (4.15), for the Eulerian case,
dug/dt = vy, = e Uyt 23)/2 — et(xy—24)/2 + V(2 — et —et)/2 + vy(—e~t+ et)/2
dug/dt = vz = e Hxyg+ x3)/2 + el(xyg— 23)/2 + vo(—e t+€!)/2 + v3(2 — et —et)/2

Solving these equations simultaneously for v, and v;, the result is as before v, = x5, v3 = z,.

A velocity field is described by v: = x1/(1 +¢), ve = 22/(1 +¢), vs = 8xs/(1 +t). Deter-
mine the acceleration components for this motion.

By (4.18), dv/dt = a; = —z,/A+t)2+ z,/A+¢t)2 = 0
dvgldt = ay = —2mo/(1+ t)2 + dxp/(1+ )2 = 2u,/(1 + t)2
dvg/dt = ag —323/(1+ t)2 4+ 9x3/(1 + £)2 = 625/(1 + ¢)2

Integrate the velocity equations of Problem 4.8 to obtain the displacement relations
x; = 2(X,?) and from these determine the acceleration components in Lagrangian
form for the motion.

By (4.18), vy = dx,/dt = x,/(1+ t); separating variables, dz,/x; = dt/(1+t) which upon inte-
gration gives Inx; = In(1+¢t) + InC where C is a constant of integration. Since x; = X; when
t=0, C =X, and so z; = X,;(1+ ¢t). Similar integrations yield z, = X,(1 + )2 and z; = X4(1+ ¢)3.

Thus from (4.14) and (4.17), vy = X;, vy =2X,(1+1¢), v =38X3(1+1¢)2 and a; =0, a, =2X,,
a; = 6X,5(1+¢t).

The motion of a continuum is given by z: = A + (¢73/A) sinAM(A +ot), 22 = —B —
(e"BMX) cos AM(A +ot), x3 = X;. Show that the particle paths are circles and that the
velocity magnitude is constant. Also determine the relationship between X; and X,
and the constants A and B.

By writing x; — A = (e~ BM\) sin M4 + wt), x5 + B = (—e~BX/A) cos M(4 + wt), then squaring
and adding, t is eliminated and the path lines are the circles (x;— A)2+ (zy,+ B)2 = e~2BV/)\,
From (4.6), vy = we™ BX cos M(A + wt), vy = we BrsinN(A +wt), v3=0 and 22 = vf + 'v§ + 'v§ =
w?e— 2B\, Finally, when t =0, «; = X; and so X; = A + (e~ B}/)) sin\A, X, = —B — (e~ B}/)\) cos NA.

A velocity field is specified by the vector v = 2°t€;, + x,t2€; + 2125t Determine
the velocity and acceleration of the particle at P(1,3,2) when ¢=1.
By direct substitution, vp = €; + 3¢, + 2€;. Using the vector form of (4.18) the accelera-
tion field is given by
a = xf@l + 22,t€, + 22,6, + (xft@l + 25128, + 2,25t €;)
.« (22t €/, + x36 8,65 + 28,8, + x,t8,8,)
or a = (2} + 22328 + Q@agt + 2,9 &, + (3,25 + 22 23t2) &

Thus ap = 3¢, + 98, + 6¢,.

For the velocity field of Problem 4.8 determine the streamlines and path lines of the
flow and show that they coincide.

At every point on a streamline the tangent is in the direction of the velocity. Hence for the
differential tangent vector dx along the streamline, v X dx =0 and accordingly the differential
equations of the streamlines become dx,/v; = dzy/vy = dxs/vs. For the given fiow these equations
are dx,/x; = dx,/22y = dxy/3x;. Integrating and using the conditions =z; = X; when t =0, the
equations of the streamlines are (x,/X;)2 = xy/X,, (2,/X))3 = 23/X;, (2/X,)3 = (3/X ;)2

Integration of the velocity expressions dx;/dt =v; as was carried out in Problem 4.4 yields
the displacement equations z; = X;(1+1¢), 2, = X,(1+¢)2, x5 = X3(1+¢t)3. Eliminating ¢ from
these equations gives the path lines which are identical with the streamlines presented above.
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4.8.

4.9.

The magnetic field strength of an electromagnetic continuum is given by X = e 4t/r
where 7?2 = z} + 2} + 22 and A is a constant. If the velocity field of the continuum
is given by v = Bmixst, v, = Bx3t?, vy = Busx;, determine the rate of change of
magnetic intensity for the particle at P(2,—1,2) when ¢=1.

Since d(r—1)/dx; = —x;/r3, equation (4.11) gives

N = —Ae At/r — e‘Af(Bxfx?,t + Bxg t2 + 15’x§x2)/r3

Thus for P at t =1, Ap = —e—A(34 + B)/9.

A velocity field is given by v = 423 — 3xs, v: = 32:, vs = —4x1. Determine the
acceleration components at P(b,0,0) and Q(0,4b,3b) and note that the velocity field
corresponds to a rigid body rotation of angular velocity 5 about the axis along
e= (4@2 + 3@3)/5.

From (4.18), a; = —25%;, ay = —9x,+ 12x5, a; = 12x, — 16x;. Thus at P(b,0,0), a = —25b%¢
which is a normal component of acceleration. Also, at @(0,4b,3b) which is on the axis of rotation,
a=0. Note that v=wXx = (48 +388;) X (2,6 + x232 + 15 €5) = (423 — 8x,) €; + 3%, €, — 4ux, €.

RATE OF DEFORMATION, VORTICITY (Sec. 4.4-4.5)

4.10. A certain flow is given by v:1 =0, vz = A(x122 —22)e B!, vs = A(x2 — 2123)e B! where

A and B are constants. Determine the velocity gradient dv:/dx; for this motion and
from it compute the rate of deformation tensor D and the spin tensor V for the point
P(1,0,3) when ¢=0.
0 0 0
By (4.19), 0v;/0x; = %y % —2z4 | Ae~Bt which may be evaluated at P when t =10

—x3 20y —x,

and decomposed according to (4.20) and (4.21) as

0 0 0 0 0 —15A4 0 0 1.54
Y = bD+V = 0 'A —6A = 0 A —34 + 0 0 —34
—34 0 —A —154 —34 —A —154 34 0

4.11. For the motion z: = X1, 22 = Xo + Xi(e 2 —1), 23 = X5+ X1(e™ % —1) compute the

rate of deformation D and the vorticity tensor V. Compare D with deﬁ/dt, the rate
of change of the Eulerian small strain tensor E.

Here the displacement components are wu; =0, u, = x(e=2t—1), u; = x,(¢~3t—1) and from ‘
(4.14) the velocity components are v, =0, v, = —2x;e~2, vy = —3x;e73t. Decomposition of the
velocity gradient dv;/dx; gives dv;/dx; = Dy; + V;. Thus

0 00 0 —e—2t —3e—3t/2 0 e~2t 3Ze—3t/2
dvy/dx; = | —2e72% 0 0 = ~—e 2t 0 0 + —e~2t 0
—3e73t 0 0 —8e3/2 0 0 —3e73t/2 0 0

Likewise, decomposition of the displacement gradient gives 8u;/dxz; = ¢;+ w;;» Thus

0 0 0 0 e"2t g3t 0 —e 2t —e—3t
oufor; = |e o0 o = Zlex o o |+
e~3t 0 0 e 3t 0 0 e 3t 0
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Comparing D with dE/dt,

0 —e—2t —38e—3t/2
deij/dt = —e—2t 0 0 = Dij
—3e—3t/2 0 0

The student should show that du;/dt = V.

4.12. A vortex line is one whose tangent at every point in a moving continuum is in the
direction of the vorticity vector q. Show that the equations for vortex lines are
dzi/qr = dxs/qe = dxs/qs.

Let dx be a differential distance vector in the direction of q. Then qXdx =0, or
(gg dxy — q3 dwy) &) + (ggday — g1 dzy) e, + (g, dwy — gpda))€; = 0

from which dx,/q; = dzy/q, = dxs/qs.

4.13. Show that for the velocity field v = (Ax;— Bxs)&: + (Bxi— Cxs)€: + (Cxy— Axy)&;
the vortex lines are straight lines and determine their equations.

From (4.29), ¢ = Vx X v = 2(C¢, + A€+ B%¢,), and by Problem 4.12, the d.e. for the vortex
lines are A dx3 = Bdx,, Bdx, =Cdz;, Cdxy, = A dx,. Integrating these in turn yields the equa-
tions of the vortex lines xz3 = Bxy,/A + K;, x, = Cx3/B+ K,, =z, = Ax,/C+ K, where the K; are
constants of integration.

4.14. Show that the velocity field of Problem 4.13 represents a rigid body rotation by
showing that D = 0.

Calculating the velocity gradient 8v;/dx;, it is found to be antisymmetric. Thus &v;/9x; =

0 —B A
B 0 —C |=V,; and D;=0.
—A C 0

4.15. For the rigid body rotation v = 3x3& — 4x3&; + (42> — 82,)€;, determine the rate of
rotation vector @ and show that v = @ X x.

From (4.30), 22 =¢q, or Q2 = 431-*-332. This vector is along the axis of rotation. Thus

(48,+38) X (2,8, + 2,8+ 2,8;) = 32,8, — 42,8, + 4wy —32)€; = v

4.16. A steady velocity field is given by v = (x} — 2:23)&; + (2} 22 + 25)€.. Determine the
unit relative velocity with respect to P(1,1, 3) of the particles at @:(1,0, 3), Q@2(1, 3/4,3),
Qs(1,7/8,3) and show that these values approach the relative velocity given by (4.26).

By direct calculation vp—vq = —& +28&, 4(vp—vq,)= ~7/4+28, and 8(vp— va,) =
—15%¢,/8 + 2€,. The velocity gradient matrix is
3x?—x§ —2x,29 O
[0vi/ox] = 20w, ai+1 0
0 0 0
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4.17.

4.18.

4.19,

and at P(1,1,3) in the negative z, direction,

2 -2 0 0 +2
(dvi/dit)g = 2 2 0 —1 = —2
? 0 0
Thus (dv/dm)g = —231—’:- 28, which is the value approached by the relative unit velocities
2

Vp— VQ{.

For the steady velocity field v = 8x3x,8 + 222238, + x1x2xs €5, determine the rate
of extension at P(1,1,1) in the direction of %= (3€ —4&)/5.

62,2y 3:@? 0
Here the velocity gradient is [9v;/0x;] = 0 43, 2x§ and its symmetric part
6 15 05 Tpx2  B@E  237p%
at Pis [Dy] = |15 4 15
0.5 15 2

Thus from (4.84) for ¥ = (3¢, —4¢,)/5,
6 15 05 3/5
d = [8/50,—4/5]| 1.5 4 15 0 = 74/25
05 15 2 || —4/5

For the motion of Problem 4.17 determine the rate of shear at P between the orthog-
onal directions ¥ = (3€; —4&;)/5 and % = (4& +38&;)/5.

In analogy with the results of Problem 3.20 the shear rate y,, is given by y,, =#°2D+%, or
in matrix form

12 3 1] 35
Yw = [4/5,0,3/5]| 3 8 3 0o | = 89/25
1 3 4| —4/5

A steady velocity field is given by v = 223, ve = 23, vs = 0. Determine the principal
directions and principal values (rates of extension) of the rate of deformation tensor
for this motion.

0o 0 2 [0 1 o 0 1
Here [ov;/0x] = (0 0 2| = 10 0 1|+ 0 0 1| and for principal values
0o 0 o L 1 0 -1 -1 0
A of Dy,
- 0 1
0 — 1 = 0 = -\ 4+ 2x
1 1 —

Thus Ay = +V2, Ay =0, Ay =—V2.
The transformation matrix to principal axis diréctions is
-1/2 -12 1/V/2
lay] = V2 ~-1V/2 o
/2 12 V2
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+2 0 o
with the rate of deformation matrix in principal form [D:}] = ] 0 (]
0 0 —V2

4.20. Determine the maximum shear rate y , for the motion of Problem 4.19.

Analogous to principal shear strains of Chapter 3,
the maximum shear rate is Ymax = (\r — Mrp)/2 = V2.

This result is also available by observing that the
motion is a simple shearing parallel to the z,x, plane in
the direction of the unit vector % = (31—’:-32)/\/5 . Thus,

as before,
o o 1|12

Ymex = tw = [0,0,1]/0 0 1|12 | = V2
110 0

It is also worth noting that the maximum rate of

extension for this motion occurs in the direction Ty
n=(¢ +&+28¢)/2 as found in Problem 4.19. Thus Fig. 4-3
0 01 1/2
No= 4™ = [12,1/2,V32]| 0 0 1 12| = V2
11 0 (|Ve2re

MATERIAL DERIVATIVES OF VOLUMES, AREAS, INTEGRALS, ETC. (Sec. 4.6-4.7)

4.21. Calculate the second material derivative of the scalar product of two line elements, i.e.
determine d?*(dx?)/dt?.

d(dx;) v d(dx2)
= e

From (4.45), at FPe dzy; and it is shown in (4.48) that = 2D;;dx; dxy. Therefore
d2(dx? dD;;
fuz ) 2 [ o d:cid:cj + Di,a L day dzy + Di,dmia ) d,
and by simple manipulation of the dummy indices,
d2(dx2 daDy; a
e ) 2 |: + lea da; da;

422, Determine the material derivative »—f p:dS; of the flux of the vector property p;
through the surface S.

By (4.57),

d _ f dp, vy _f vy _ f dp; v 0w
dt j; p; dsl - s [ + Pig ax dst s p; ami dsk - s dt + p; axk DPr axk dsk

4.23. Show that the transport theorem derived in Problem 4.22 may be written in symbolic
notation as

d ~ 9 ~
EJ; p-ndS = f [a—l; + v(V-p) + VX(va)]-ndS

By a direct transcription into symbolic notation of the result in Problem 4.22,
d N dp — <A
7 fs p*ndS fs |:dt + p(V-v) (p V)v] n dS

-

S

i)

[‘;—'t’ + (veV)p + p(V*v) — (p'V)v] *nds




CHAP. 4]

4.24.

4.25.

MOTION AND FLOW 123

Now use of the vector identity VX (pXv) = p(Vev) —v(V+p)+ (v V)p — (p* V)v (see Problem
1.65) gives

d

) pends = f[a—"+v(v-p)+vx<va)]-ﬁds
s s Lot

Express Reynold’s transport theorem as given by equations (4.53) and (4.54) in
symbolic notation.

Let P*(x, t) be any tensor function of the Eulerian coordinates and time.

d%j; Px(x,t)dV = fv[ﬂi+v (P*V)J

Then (4.53) is

.and by Gauss’ divergence theorem this becomes (4.54),

d f oP*
2 Prx,t)dv = f <
dt v ’ v Jat

dv + f Pxy+1h dS
S

If the function P*(x,?) in Problem 4.24 is the scalar 1, the integral on the left is
simply the instantaneous volume of a portion of the continuum. Determine the
material derivative of this volume.

. . . d
Using the vector form of (4.58) as given in Problem 4.24, Zl?f dVv = f Vv dV. Here
. v v

V «v dV represents the rate of change of dV, and so V +v is known as the cubical rate of dilata-
tion. This relationship may also be established by a direct differentiation of (4.38). See Problem 4.43.

MISCELLANEOUS PROBLEMS

4.26.

4.27.

4.28.

From the definition of the vorticity vector (4.29),
and that 2Vij = ¢ Y

By (4.29), q; = eV, ; = €k (Vpk,j1 + Vi, ) and since v, = 0 (see, for example, Problem
1.50), qi = €5k Vik, 51 = €ijk ij. From this result €irsd; — = (8"~58k - S,kssj) ij = 2Vsr'

q = curlv, show that ¢, =¢,V,,

€irs €ijk ij

Show that the acceleration a may be written as a = v +qXv+ 3Vl

at
v; v
From (4.18), a; = 5-t-+ Vk 5y and so
v, 0v; 9y vy
a = E + Vi <axk_a—xi + vka_’.t{
vy 1 (V) Iv; 1 0(vvy)
= =+ 20 Vy + 5 om = ot ek T o0

which, as the student should confirm, is the indicial form of the required equation.

Show that d(InJ)/dt = divv.

Let 0x;/0X,, be wrltten here as ;p so that J = epgr#;, p%s,q%3,r and J becomes the sum of
the three deterrpmants, J= epr(®1,p T2, %3,k + ¥1,p %9, %3, R T %1, p Lo, a%3.r). Now :;:Lp = v}, 5%, P,
ete., and so J = epqr(¥,5s%5, p%2,q%3 R T %1, pV2,5s%5, %3, R T 1,p%2,@V3,5%s,g)- Of the nine 3X3
debermmants resulting from summation on 8 in this expression, the three non-vanishing ones yield
J= vy, + vy, 0 + 3,3 = v, J. Thus J=JV+v and so d(lnJ)/dt = divv.
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4.30.

4.31.

4.32.
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Show that for steady motion (dvi/0t=0) of a continuum the streamlines and
pathlines coincide.

As shown in Problem 4.7, at a given instant ¢t streamlines are the solutions of the differential
equations dx,/v, = dxy/v, = dxs/v;. Pathlines are solutions of the differential equations dx;/dt =
vi(x, t). If v; = vi(x), these equations become dt = dx,/v, = dx,/vy = dzs/vy; which coincide with
the streamline differential equations.

For the steady velocity field v = 2fas + ), v, = —a} — 2123, v3=0 determine
expressions for the principal values of the rate of deformation tensor D at an arbitrary
point P(x1, 2, 3).

By (4.19) 6’vl/6a}j = Dij + V”, or

22, 25 +325 0 2x@y —ait+al 0 0 2(x2+af) 0
—3ai - 2wy 0| = |(—aital —2mm, 0] + | 2@F+ad) 0 0
0 0 0 0 0 0 0 0 0

Principal values d(;, are solutions of

2z my—d  —xital 0
—aft+al —2a@y—d 0 = 0 = —d—42lal +d2— (a2 —2?)Y
0 0 ~d

Thus dgy =0, dey = —(2F +23), dgy= (@ +23). Note here that dy = (z%+2}), dy=0,
din = —(xf + xg).

Prove equation (4.43) by taking the material derivative of dS; in its cross product
form dS; = ¢, dx;® dz®.
T

d
Using (3.88), dS; = ¢;,(02,/0X,) dX,(0%,/0X3) dX; and = dS; =

ik
dx; a:cj EN

0% oa Cax oxX, €k 90X, 90X, 9X 5 Xy dX, ‘_
J dX, dX; Thus 5—1—1 X dS = 8§, dS; =dS, JolX2 dX; and by Problem 4.28,
P
ds, X, 9 X, d
Do — (EL1,% 5901 %% dX,dX,
dt dz, = dxq dazy 0z,

ox v d0x; ox v
%1 dx, Ok dx q I ax, ¢ ax q

ik —= S o — . — d.
< Har>a aX, > GEM <€‘“'° X, 20X, 3> oz,

(Bvg/dxg) AS, — (dvg/dx,) dS,

I

Use the results of Problems 4.27 and 4.23 to show that the material rate of change
of the vorticity flux (%J; q+ndS equals the .ﬁux of the curl of the acceleration a.
Taking the curl of the acceleration as given in Problem 4.27, '
VXa = vx + V X (@Xv) + V X V(v2/2)
or VXa = aq/at+VX(qu) = dq/dt + q(V+v) — (q*V)v

since g =V Xv and V X V(22/2) =0. Thus if q is substituted for p in Problem 4.23,

if q-ndsS = f dq+q(V'v)-(q Viv|hdS = f(vxa)-’ﬁds
dat S S S
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4.33. For the vorticity g; show that :—tj; q,dV = J; [e5 2 + ¢;v,— q,v,] dS,.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.

4.40.

441.

442,

4.43.

4.44.

4.45.

From Problem 4.32 the identity V X a = dq/dt+ V X (g X v) may be written in indicial form
as 90¢;/9t = e 0k, ; — €sp(epmrIm¥s),,» Thus

aq;
f ’ng = f {5ijkak, i (eispepmrqmvr),s] dv
\4 \4
and by the divergence theorem of Gauss (1.157),

aq;
f T3 av = f € dS; — f (8imSsr — 8irSsm)(@m¥y) dS; = f leijear + q;v; — q;] dS;
v s s s

Supplementary Problems
A continuum motion is given by =z, = X,et + X3(et —1), 2, = X, + X3(et —e™t), 23 =X;. Show
that J does not vanish for this motion and obtain the velocity components.

Ans. v, = (X, + Xp)et, vy = Xz(et+et), v3=0 or v, = x; — x5, Vy = zzlet+e7t), v3=0

A velocity field is specified in Lagrangian form by v, =-—X,e™t, vy = —Xj;, v3 =2t. Determine
the acceleration components in Eulerian form. Ans. a), = e Hwg+ tag—13), ay =10, a3 =2

Show that the velocity field v; = e;.bja, + ¢; where b; and ¢; are constant vectors, represents a
rigid body rotation and determine the vorticity vector for this motion.
Ans. q; = bx; ; — b; = 2b;

Show that for the flow v; = z;/(1 4+ t) the streamlines and path lines coincide.

The electrical field strength in a region containing a fluid flow is given by A = (A cos 3t)/r where

72 = 2% 4+ zZ and A is a constant, The velocity field of the fluid is v, = 22y + 23, v, = —a} —
:clxg, v3 = 0. Determine d\/dt at P(x,, x5, %3). Ans. dr/dt = (—8A4 sin 3t)/r

Show that for the velocity field v, = «%z, + 23, v, = —2 — 222, v; =0 the streamlines are
circular.

For the continuum motion =z, =X,, 2z, = ef(X,+ X3)/2 + e~ {(X,— X;3)/2, x5 = et(X,+ X3)/2 —
e~ t(X,— X,)/2, show that D;; = de;/dt at t=0. Compare these tensors at t = 0.5.

For the velocity field v, = xf:cz + :cg, vy = —(m? +xlx§), vg = 0, determine the principal axes
and principal values of D at P(1,2, 3).

5 0 0 3/V1i0 1/V10 o
Ans. Dj = [0 0 O |; a; = 0 o 1

0 0 —5 1/V10 —3/V10 o

For the velocity field of Problem 4.41 determine the rate of extension in the direction
P=(e - 28, + 2%;)/3 at P(1,2,3). What is the maximum shear rate at P?

Ans. d0 = —24/9, Ypax =5
Show that d(8x;/6X;)/dt = v; ;2 ; and use this to derive (4.41) of the text directly from (4.38).

Prove the identity e, (vsv,5),q = @pVq.q + Vop,q — 9q¥p,q Where v; is the velocity and g; the
vorticity. Also show that v, ;v;; = D;D;; — q;q/2.

Prove that the material derivative of the total vorticity is given by

d
%J; q;dV = j; leiar + q;v;] dS;




Chapter 5

Fundamental Laws
of Continuum Mechanics

51 CONSERVATION OF MASS. CONTINUITY EQUATION

Associated with every material continuum there is the property known as mass. The
amount of mass in that portion of the continuum occupying the spatial volume V at time ¢
is given by the integral

m = J;p(x,t)dV (5.1)

in which p(x, t) is a continuous function of the coordinates called the mass density. The law
of conservation of mass requires that the mass of a specific portion of the continuum remain
constant, and hence that the material derivative of (5.1) be zero. Therefore from (4.52)
with Pjj.. .(x,t) = p(x,t), the rate of change of m in (5.1) is

dm _ d f _ j‘ dp | ovk _
i = ) emvay = ) [Eﬂm] v = 0 (5.2)
Since this equation holds for an arbitrary volume V, the integrand must vanish, or
d d :
El% +pv., =0 oor d—§+ p(V:v) =0 (5.9)

This equation is called the continuity equation; using the material derivative operator it
may be put into the alternative form

d d
a—’t’+(pvk),k =0 or a—’t’ +V-(pv) =0 (5.4)

For an incompressible continuum the mass density of each particle is independent of
time, so that dp/dt =0 and (5.3) yields the result

V=0 or divye =0 (5.5)

The velocity field v(x, ) of an incompressible continuum can therefore be expressed by the

equation

v S

i T Sk

k; O Vv =VXs (5.6)
in which s(x, t) is called the vector potential of v. '

The continuity equation may also be expressed in the Lagrangian, or material form.
The conservation of mass requires that

JL X, 0)dV, = ﬁ o(x, t) AV (5.7)

where the integrals are taken over the same particles, i.e. V is the volume now occupied by
the material which occupied V, at time ¢t = 0. Using (4.1) and (4.38), the right hand integral
in (5.7) may be converted so that

_ﬁ X, 0)dV, = fv p(x(X, t), )] dV, = j; (X, )TV, (5.8)

126
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Since this relationship must hold for any volume V,, it follows that

Po = PJ (5'9)
which implies that the product pJ is independent of time since V is arbitrary, or that
d
T =0 (5.10)

Equation (5.10) is the Lagrangian differential form of the continuity equation.

52 LINEAR MOMENTUM PRINCIPLE. EQUATIONS OF MOTION.
EQUILIBRIUM EQUATIONS

A moving continuum which oc-
cupies the volume V at time ¢ is
shown in Fig. 5-1. Body forces b;
per unit mass are given. On the dif-
ferential element dS of the bqunding
surface, the stress vector is ™. The
velocity field v; = du:/dt is prescribed
throughout the region occupied by .
the continuum. For this situation, %y
the total linear momentum of the
mass system within V is given by

Xy

2

P(t) = f pv,dV  (5.11) Fig. 5-1
\4

Based upon Newton’s second law, the principle of linear momentum states that the time
rate of change of an arbitrary portion of a continuum is equal to the resultant force acting
upon the considered portion. Therefore if the internal forces between particles of the con-
tinuum in Fig. 5-1 obey Newton’s third law of action and reaction, the momentum principle
for this mass system is expressed by

) — if
j; ;™ dS + ﬁ pbidV = a@ Vp’t)idV

or (5.12)
d

ft"A"dS +fpbdv = & vav
S v dt v

Upon substituting tia) = a,n, into the first integral of (5.12) and converting the result-
ing surface integral by the divergence theorem of Gauss, (5.12) becomes

d d ’
fv(aﬁﬁpbi)dv - afvpviazv or fv(vx-}:+pb)dv - %fpvdv (5.13)

In calculating the material derivative in (5.13), the continuity equation in the form given
by (5.10) may be used. Thus

d Y = [ [0 %D s gy, - f o
dtj;pvidV = i, v, = R e v, = ) gedV (5.14)

Replacing the right hand side of (5.13) by the right hand side of (5.14) and collecting terms
results in the linear momentum principle in integral form,

ﬁ(qﬁ,j-f-pbi—p?.)i)dv =0 or fv(vx-z+pb—p"z)dv =0 (5.15)
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Since the volume V is arbitrary, the integrand of (5.15) must vanish. The resulting
equations, . .
ot pb, = pv, or Vi 2 + pb = pv (5.16)
are known as the equations of motion.

The important case of static equilibrium, in which the acceleration components vanish,
is given at once from (5.16) as

aﬁjj+pbi =0 or Vi'2 +pb =0 (5.17)

These are the equilitbrium equations, used extensively in solid mechanics.

5.3 MOMENT OF MOMENTUM (ANGULAR MOMENTUM) PRINCIPLE

The moment of momentum is, as the name implies, simply the moment of linear
momentum with respect to some point. Thus for the continuum shown in Fig. 5-1, the
total moment of momentum or angular momentum as it is often called, with respect to the
origin, is
N(t) = J; eu®;pv, AV or N = j; (x X pv) dV (5.18)

in which «; is the position vector of the volume element dV. The moment of momentum .
principle states that the time rate of change of the angular momentum of any portion of a
continuum with respect to an arbitrary point is equal to the resultant moment (with respect
to that point) of the body and surface forces acting on the considered portion of the con-
tinuum. Accordingly, for the continuum of Fig. 5-1, the moment of momentum principle
is expressed in integral form by

A d
L cijkxjt;(c") as + j; e“kx].pbk dav = dt ﬁ €503 PV, av
or (5.19)
fs(xxt‘"’)ds+£(xpr)dv = d%j;(xxpv)dv

Equation (5.19) is valid for those continua in which the forces between particles are equal,
opposite and collinear, and in which distributed moments are absent.

The moment of momentum principle does not furnish any new differential equation of
motion. If the substitution t,ﬁa’ =o,n, is made in (5.19), and the symmetry of the stress
tensor agsumed, the equation is satisfied identically by using the relationship given in (5.16).
If stress symmetry is not assumed, such symmetry may be shown to follow directly from
(5.19), which upon substitution of t = o, reduces to

j:] exondV = 0 or j; Z,dV =0 (5.20)

Since the volume V is arbitrary,
=0 or Z,=0 (5.21)

€3k %k

which by expansion demonstrates that T = Opye

54 CONSERVATION OF ENERGY. FIRST LAW OF THERMODYNAMICS.
ENERGY EQUATION

If mechanical quantities only are considered, the principle of conservation of energy
for the continuum of Fig. 5-1 may be derived directly from the equation of motion given
by (5.16). To accomplish this, the scalar product between (5.16) and the velocity v: is first
computed, and the result integrated over the volume V. Thus
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f pv,0,dV = f v0,,dV + f pv, b, dV (5.22)
\4 \%4 ’ \4
. . i f viv; _ 4 pv* = Ed_I_{

But j; p’l)i’l)idv = di . p’2—dV = (ﬂ v TdV = dt (5.23)
which represents the time rate of change of the kinetic energy K in the continuum. Also,
V05,5 = (V05) ; — v, 0, and by (4.19) v, ; = D, + V,,, so that (5.22) may be written

dK

5 T ) Do, dV = . (v,0,) ;,dV + ) pv, b, dV (5.24)

since Vo, = 0. Finally, converting the first integral on the right hand side of (5.24) to a

it
surface integral by the divergence theorem of Gauss, and making use of the identity

tm = o the energy equation for a continuum appears in the form

dK (n
i + j; Do, dV = L v,t; ).dS + j; pbv, dV (5.25)

This equation relates the time rate of change of total mechanical energy of the continuum
on the left side to the rate of work done by the surface and body forces on the right hand
side of the equation. The integral on the left side is known as the time rate of change of
internal mechanical energy, and written dU/dt. Therefore (5.25) may be written briefly as

dK , dU _ aw

dat dt ~—  dt
where dW/dt represents the rate of work, and the special symbol & is used to indicate that
this quantity is not an exact differential.

(5.26)

If both mechanical and non-mechanical energies are to be considered, the principle of
conservation of energy in its most general form must be used. In this form the conservation
principle states that the time rate of change of the kinetic plus the internal energy is equal
to the sum of the rate of work plus all other energies supplied to, or removed from the
continuum per unit time. Such energies supplied may include thermal energy, chemical
energy, or electromagnetic energy. In the following, only mechanical and thermal energies
are considered, and the energy principle takes on the form of the well-known first law of
thermodynamics.

For a thermomechanical continuum it is customary to express the time rate of change
of internal energy by the integral expression

U
at i vpudV = vpudV (5.27)

where u is called the specific internal energy. (The symbol u for specific energy is so well
established in the literature that it is used in the energy equations of this chapter since
there appears to be only a negligible chance that it will be mistaken in what follows for the
magnitude of the displacement vector w;.) Also, if the vector ¢; is defined as the heat flux
per unit area per unit time by conduction, and z is taken as the radiant heat constant per
unit mass per unit time, the rate of increase of total heat into the continuum is given by

%‘f = —L cnidS + f pzdV (5.28)
\%
Therefore the energy principle for a thermomechanical continuum is given by

dK  dU _ 4w , 4Q
W%-E—E—-FE (5.29)
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or, in terms of the energy integrals, as
ifp%dv +f ptndV = ftgﬁ’v.ds + f pv.b. dV +prdV ~ fcin.dS
it Jy P2 v s v v s (5.80)

Converting the surface integrals in (5.30) to volume integrals by the divergence theorem of
Gauss, and again using the fact that V is arbitrary, leads to the local form of the energy
equation:

d [v? 1 1
a<?+u> = ;( V), + b — ’—)cm. +z
or (5.31)
‘fi—ltt lZ:D—lv-c-+-b-v—+-z
P P

Within the arbitrarily small volume element for which the local energy equation (5.31)
is valid, the balance of momentum given by (5.16) must also hold. Therefore by taking the
scalar product between (5.16) and the velocity pv,v;, = v,0,, + pv;b;, and, after some simple
manipulations, subtracting this product from (5.31), the result is the reduced, but highly
useful form of the local energy equation,

du 1 1

at ;aijD,ij - ;ci,i
This equation expresses the rate of change of internal energy as the sum of the stress power
plus the heat added to the continuum.

+ z (5.32)

55 EQUATIONS OF STATE. ENTROPY. SECOND LAW OF THERMODYNAMICS

The complete characterization of a thermodynamic system (here, a continuum) is said
to describe the state of the system. This description is specified, in general, by several
thermodynamic and kinematic quantities called state variables. A change with time of the
state variables characterizes a thermodynamic process. The state variables used to describe
a given system are usually not all independent. Functional relationships exist among the
state variables and these relationships are expressed by the so-called equations of state.
Any state variable which may be expressed as a single-valued function of a set of other
state variables is known as a state function.

As presented in the previous section, the first law of thermodynamics postulates the
interconvertibility of mechanical and thermal energy. The relationship expressing con-
version of heat and work into kinetic and internal energies during a thermodynamic
process is set forth in the energy equation. The first law, however, leaves unanswered the
question of the extent to which the conversion process is reversible or irreversible. All
real processes are irreversible, but the reversible process is a very useful hypothesis since
energy dissipation may be assumed negligible in many situations. The basic criterion for
irreversibility is given by the second law of thermodynamsics through its statement on the
limitations of entropy production.

The second law of thermodynamics postulates the existence of two distinct state
functions; T the absolute temperature, and S the entropy, with certain following properties.
T is a positive quantity which is a function of the empirical temperature 6, only. The
entropy is an extensive property, i.e. the total entropy in the system is the sum of the
entropies of its parts. In continuum mechanics the specific entropy (per unit mass), or

entropy density is denoted by s, so that the total entropy L is given by L = j‘: psdV. The

entropy of a system can change either by interactions that occur with the surroundings, or
by changes that take place within the system. Thus

ds = ds© + ds® (5.39)
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where ds is the increase in specific entropy, ds‘® is the increase due to interaction with the
exterior, and ds® is the internal increase. The change ds® is never negative. It is zero
for a reversible process, and positive for an irreversible process. Therefore

ds® > 0 (irreversible process) (5.34)
ds®? = 0 (reversible process) (5.85)

In a reversible process, if dg) denotes the heat supplied per unit mass to the system, the
change ds‘® is given by

dste = 44w reversible process 5.36
T

56 THE CLAUSIUS-DUHEM INEQUALITY. DISSIPATION FUNCTION

According to the second law, the time rate of change of total entropy L in a continuum
occupying a volume V is never less than the sum of the entropy influx through the con-
tinuum surface plus the entropy produced internally by body sources. Mathematically, this
entropy principle may be expressed in integral form as the Clausius-Duhem inequality,

d Ny
afv,,sazv = fvpedv - fs%ds (5.87)

where e is the local entropy source per unit mass. The equality in (5.37) holds for reversible
processes; the inequality applies to irreversible processes.

The Clausius-Duhem inequality is valid for arbitrary choice of volume V so that trans-
forming the surface integral in (5.37) by the divergence theorem of Gauss, the local form
of the internal entropy production rate v, per unit mass, is given by

_ ds l/¢ -
vo= Gme-2(3), =0 (5.38)
This inequality must be satisfied for every process and for any assignment of state variables.
For this reason it plays an important role in imposing restrictions upon the so-called
constitutive equations discussed in the following section.

In much of continuum mechanics, it is often assumed (based upon statistical mechanics

of irreversible processes) that the stress tensor may be split into two parts according to

the scheme, 05 = ol + o® (5.39)

[

where ¢ is a conservative stress tensor, and ol is a dissipative stress tensor. With this
assumption the energy equation (5.32) may be written with the use of (4.25) as

du 1 . 1 . dgq
at ;ai(jC) & + ;al{jD)eii aal (5.40)

In this equation, %ogj.l” ¢, is the rate of energy dissipated per unit mass by the stress, and

dq/dt is the rate of heat influx per unit mass into the continuum. If the continuum under-
goes a reversible process, there will be no energy dissipation, and furthermore, dg/dt =
dqr>y/dt, so that (5.40) and (5.36) may be combined to yield

du _ 1 e @

at ;0'..]. € + Tdt (5.41)
Therefore in the irreversible process described by (5.40), the entropy production rate may
be expressed by inserting (5.41). Thus

ds _ 1dq 1

% = T E + pT O';jD) é].]. (542)
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The scalar ang’eij is called the dissipation function. For an irreversible, adiabatic process

(dg =0), ds/dt >0 by the second law, so from (5.42) it follows that the dissipation function
is positive definite, since both p and T are always positive.

5.7 CONSTITUTIVE EQUATIONS. THERMOMECHANICAL AND
MECHANICAL CONTINUA

In the preceding sections of this chapter, several equations have been developed that
must hold for every process or motion that a continuum may undergo. For a thermo-
mechanical continuum in which the mechanical and thermal phenomena are coupled, the
basic equations are

(a) the equation of continuity, (5.4)

d d
5E T (v =0 or FHHV(w) =0 (5.49)

(b) the equation of motion, (5.16)
O + Pbi = p?.). or Vx 2 +pb = p\.f (544)

t

(c) the energy equation, (5.32)

2—? = %aﬁDﬁ—%ci,i-#z or % = %Z:D~pv-c+z (5.45)

Assuming that body forces b; and the distributed heat sources z are prescribed, (5.43),

(5.44) and (5.45) consist of five independent equations involving fourteern unknown functions

of time and position. The unknowns are the density p, the three welocity components v,

(or, alternatively, the displacement components u:), the six independent stress components

0., the three components of the heat flux vector ¢, and the specific internal energy u. In
addition, the Clausius-Duhem inequality (5.38)

ds _1/a -
BERHONEE

which governs entropy production, must hold. This introduces two additional unknowns:
the entropy density s, and T, the absolute temperature. Therefore eleven additional equa-
tions must be supplied to make the system determinate. Of these, siz will be in the form
known as constitutive equations, which characterize the particular physical properties of
the continuum under study. Of the remaining five, three will be in the form of temperature-
heat conduction relations, and two will appear as thermodynamic equations of state; for
example, perhaps as the caloric equation of state and the entropic equation of state. Specific
formulation of the thermomechanical continuum problem is given in a subsequent chapter.

It should be pointed out that the function of the constitutive equations is to establish
a mathematical relationship among the statical, kinematical and thermal variables, which
will describe the behavior of the material when subjected to applied mechanical or thermal
forces. Since real materials respond in an extremely complicated fashion under various
loadings, constitutive equations do not attempt to encompass all the observed phenomena
related to a particular material, but, rather, to define certain ideal materials, such as the
ideal elastic solid or the ideal viscous fluid. Such idealizations or material models as they
are sometimes called, are very useful in that they portray reasonably well over a definite
range of loads and temperatures the behavior of real substances.
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In many situations the interaction of mechanical and thermal processes may be
neglected. The resulting analysis is known as the uncoupled thermoelastic theory of con-
tinua. Under this assumption the purely mechanical processes are governed by (5.43) and
(5.44) since the energy equation (5.45) for this case is essentially a first integral of the
equation of motion. The system of equations formed by (5.43) and (5.44) consists of four
equations involving ten unknowns. Six constitutive equations are required to make the
system determinate. In the uncoupled theory, the constitutive equations contain only the
statical (stresses) and kinematic (velocities, displacements, strains) variables and are often
referred to as stress-strain relations. Also, in the uncoupled theory, the temperature field
is usually regarded as known, or at most, the heat-conduction problem must be solved
separately and independently from the mechanical problem. . In isothermal problems the
temperature is assumed uniform and the problem is purely mechanical.

Solved Problems

CONTINUITY EQUATION (Sec.5.1)

5.1.  An trrotational motion of a continuum is described in Chapter 4 as one for which the
vorticity vanishes identically. Determine the form of the continuity equation for
such motions.

By (4.29),curl v =0 when q =0, and so v becomes the gradient of a scalar field ¢(x; t) (see
Problem 1.50). Thus v; = ¢ ; and (5.3) is now dp/dt + pg i = 0 or dp/dt + pV2¢4 = 0.

52. If P?},*,,(x, t) represents any scalar, vector or tensor property per unit mass of a con-
tinuum so that P (x,t) = pP¥” .(x,t) show that

d dP
at j‘: pP (x t)dv f dV
By (4.52),
d o _ 4 px w0V
i J, pPy. . dV = j‘; [dt (P, ) + PPii...Eil dv

-

dP5* wx [ do vy, dPy¥
v[" a T i <dt+pax>]dv = f” a v
since by (5.3), dp/dt+ pvy, = 0.

\4

53. Show that the material form d(pJ)/dt =0 of the continuity equation and the spatial
form dp/dt + pv, , = 0 are equivalent.

Differentiating, d(pJ)/dt = (dp/dt)J + pdJ/dt = 0 and from Problem 4.28, dJ/dt = Jvy, so
that d(pJ)/dt = J(dp/dt + pvy ;) = 0.

5.4. Show that the velocity field vi= Axi/7®, where xix; =72 and A is an arbitrary con-
stant, satisfies the continuity equation for an incompressible flow.

From (5.5) vy, = 0 for incompressible flow. Here
vy = Az /r3— Bxx/r5) = A(Syp/r3 — 3u;2,/75)
and so v, = (3—3)/r = 0 to satisfy the continuity equation.
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For the velocity field v, = z,/(1 +¢), show that px x,x, =p, X X, X,.

Here v, =3/(1+t) and integrating (5.8) yields Inp = —In(Q1+¢3+InC where C is a
constant of integration. Since p =p, when ¢t =0, this equation becomes p = po/(1+ £)3. Next
by integrating the velocity field dux;/x; =dt/(1+t) (mo sum on i), z;=X;/(1+¢t) and hence
pT1%a%3 = poX 1 X5 X5

LINEAR AND ANGULAR MOMENTUM. EQUATIONS OF MOTION (Sec.5.2-5.3)

5.6.

5.7.

5.8.

5.9.

Show by a direct expansion of each side that the identity eﬁkajk'é‘
and (5.21) is valid.

By (1.15) and (2.8),
Z,

t

;= 2, used in (5.20)

A A A A A A A A
011€; Xel + 012e1 X e2 —+ 0y3€ X €3 + -+ 033e3 X €3

il

— A A A
= (093 —030)€; + (033 —013) € + (010~ 021)€;

Also, expanding ¢;0; gives identical results, (093 — 035) for =1, (o3, —0y3) for 4 =2, (01— og)
for ¢=3. '

If distributed body moments m; per unit volume act throughout a continuum, show
that the equations of motion (5.16) remain valid but the stress tensor can no longer
be assumed symmetric.

Since (5.16) is derived on the basis of force equilibrium, it is not affected. Now, however, (5.19)
acquires an additional term so that

d A
5 f eripv dV = f er@iti™ dS + f (eijk 0l + M) AV
v s v

which reduces to (see Problem 2.9) f (605 +m;) dV = 0, and because V is arbitrary, eop +
m; = 0 for this case. v

The momentum principle in differential form (the so-called local or “in the small”
form) is expressed by the equation 9(pv,)/9t = pb; + (o, — pvv;) ;- Show that the equa-
tion of motion (5.16) follows from this equation.
Carrying out the indicated differentiation and rearranging the terms in the resulting equation
yields
v(0p/3t + p,;v; + pv;, ) + BVt + viv;,5) = eby + oy,

The first term on the left is zero by (5.4) and the second term is pa;. Thus pa; = pb; + ¢y;,; which
is (5.16).

Show that (5.19) reduces to (5.20).

Substituting o7, for t,(c“) in (5.19) and applying the divergence theorem (1.157) to the resulting
surface integral gives

d
f il (X00k),p + xjoby} AV = Tt f &0 (x5v)) AV
v v
Using the results of Problem 5.2, the indicated differentiations here lead to
f eijk{xj,popk + mj(apk,p + pbk - p’l')k) - p’Uj’Uk} dV = 0
v

The term in parentheses is zero by (5.16), also x;, =8;, and ez, =0, so that finally

f €3k jkc dv = 0.
\ %4
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5.10. For a rigid body rotation about a point, v,= ¢ ex,. Show that for this velocity

(5.19) reduces to the well-known momentum principle of rigid body dynamics.

The left hand side of (5.19) is the total moment M; of all surface and body forces relative to
the origin. Thus for v; = ejw;wy,

d d
M; = at f €15k % j0€kpqpTq dv = at f w,p(83p85q — 8iq85,)%i%q AV
\ 4 \4
d d
= % [wp fv p(8ip%qq — %,%;) dV] = & (wplip)

where I;, = f p(8;,%qxq — x,2;) AV is the moment of inertia tensor.
v

ENERGY. ENTROPY. DISSIPATION FUNCTION (Sec.5.4-5.6)

5.11. Show that for a rigid body rotation with v, = ¢, 0, the kinetic energy integral of
(5.23) reduces to the familiar form given in rigid body dynamics.

From (5.23),

_ Vv d _ 1
K = ’ P vV = 3 e ExEipqupTq AV
\4

f

1
E f pwpwj('o‘jpb‘kq - quskp)xkxq dV
\ 4

Wjp

5 j; p(85p%qxy — x,%;) dV

wopliy

el e

In symbolic notation note that K = )

5.12. At a certain point in a continuum the rate of deformation and stress tensors are

iven b
g v 1 6 4 i 4 0 -1
Dij = 6 3 2 and o, = 02 7
4 2 5 -1 7 8

Determine the value A of the stress power Dij.a{j at the point.

Multipiying each element of Dj; by its counterpart jn oy; and adding, A = 4+0—4+0—6+
14 — 4 4+ 14 4 40 = 58.

5.13. If o,= —p8,; where p is a positive constant, show that the stress power may be
expressed by the equation Do, = 4 @.
N o dt

By (4.19), Dij = Vi, Vij" and since Vijc“- = 0, it follows that D”a” = ’vi,j(—pb‘ij) = —pv;,;.
From the continuity equation (5.3), v;; = —(1/p)(dp/dt) and so Djjo;; = (p/p)(dp/dt) for o;; = —pdy;.

5.14. Determine the form of the energy equation if o, = (—p +1*D,,)8, + 2p*D,; and the

heat conduction obeys the Fourier law ¢, = —kT ,.
From (5.82), d
pd—;‘ = (—p+\*Dy)syDy; + 2u*DyDy; + kT + 2
%% O+ 202 — 4utIl, + kT g + 2

where I and II, are the first and second invariants respectively of the rate of deformation tensor.
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5.15.

5.16.
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If o,=—p3, determine an equation for the rate of change of specific entropy during
a reversible thermodynamic process.

le_: = % + pdp upon use of the result in Problem 5.13.

Here o;; = aff) and (5.41) gives T e

For the stress having o = BD,D,, determine the dissipation function in terms of
the invariants of the rate of deformation tensor D.

Here by (4.25), c;‘,” > &; = BDyDy;Dy; which is the trace of D3 (see page 16) and may be evaluated
by using the principal axis values Dy, Dy, D(3y. Thus by (1.138) the trace
DyDyD,; = Db, + DYy + Diay
= (Day + D¢y + D3y)® — 3(Dgyy + Degy + Dy D ayDegy + DioyDisy + DsyDiry)
+ 3D1yD 5D s

Therefore of”’ &; = B[I3 — 3,11, + 31II,].

CONSTITUTIVE EQUATIONS (Sec.5.7)

5.17.

5.18.

5.19.

For the constitutive equations o, =KD, show that because of the symmetry of
the stress and rate of deformation tensors the fourth order tensor K, has at most 36
distinct components. Display the components in a 6 X 6 array.

Since oy; = 035, Kijpq = Kjipgs and since Dy; = Dy, Kijq = Kijqpe If Kjjpq is considered as the
outer product of two symmetric tensors A;;B,; = Kj;,q, it is clear that since both 4;; and B;; have
six independent components, K;;,, will have at most 36 distinct components.

The usual arrangement followed in displaying the components of Kj;,, is
Kllll Kll22 K1133 Kll23 Kllal Klll2
K22ll K2222 K2233 K2223 K2231 K22l2
K3311 K3322 K3333 K3323 K3331 K3312
K2311 K2322 K2333 KZS‘.’.S K2331 K2312
KSIII K3122 K3133 1(3123 K3131 K3112

K12ll K1222 K1233 K1223 K1231 Kl2l2

If the continuum having the constitutive relations
o, =K, D, of Problem 5.17 is assumed isotropic
so that K, has the same array of components in any
rectangular Cartesian system of axes, show that by
a cyclic labeling of the coordinate axes the 36 com-
ponents may be reduced to 26.

The coordinate directions may be labeled in six different
ways as shown in Fig. 5-2. Isotropy of K;;,, then requires
that Ky = Kz = Kapsy = Kooy = Kgan = Kggp and that
Koz = Kia1s = Koges = Kooy = Kapay = Kgpge which reduces
the 36 components to 26. By suitable refiections and rotations
of the coordinate axes these 26 components may be reduced
to 2 for the case of isotropy. Fig. 5-2

For isotropy K. may be represented by K, = A*8§.8 + u*(8. 5. +8 .85 ). Use

ijpq . . . iipq iivpa ip~iq iq” jp:
this to develop the constitutive equation o, =K, D  in terms of A* and u*.
oij = N8i8pqDpq T 1*(8:5854 T 8ig85)Dpq

}\*Siijp + ”*(Dij +D“) = >\*8i]'Dpp + 2[[*D”
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5.20.

Show that the constitutive equation of Problem 5.19 may be split into the equivalent
equations o, = (3\* +2u*)D,, and s; =2u*D;; where s, and D are the deviator ten-
sors of stress and rate of deformation, respectively.

Substituting o;; = 8; + 8;;01/8 and Dy = Djj + §;Dy/3 into oy = N*8;Dyy + 2u*Dy;  of
Problem 5.19 results in the equation s; + §;01,/8 = A*8;;Dy + 2;4*(D{]-+8ijDkk/3). From this
when 7 j, 8;=2u*Dj; and hence oy = (3\* + 2p*) Dy

MISCELLANEOUS PROBLEMS

5.21.

5.22.

5.23.

5.24.

5.25.

Show that —(—% <%> = (e, ; + 4v:)/p where p is the density, a; the acceleration and

q: the vorticity vector.

By direct differentiation dit <—;3> = % — (—g. But q; = ;a,; + qv;,; — q;v;,; (see Problem
4.32); and by the continuity equation (5.8), s = —pv;;. Thus
d [ 1 '
dt <f> = Slek@e; + qviy T 4t Gy = (et F a;vi,5)/p

A two dimensional incompressible flow is given by v = A(x} — 23)/r4, v = A(22:122)/ 7%,
va=0, where 72 = z? + 2. Show that the continuity equation is satisfied by this
motion.

By (5.5), v;,; =0 for incompressible flow. Here v, = A[—4x (x> —x})/r® + 2x,/7%] and
Vo, = Al2a,/rt — 811102/7‘3]. Adding, v, ;+ vy, = 0.

Show that the flow of Problem 5.22 is irrotational.
By (4.29), curlv = 0 for irrotational flow. Thus

A A A
€, €y €3
curlv. = 9/9x, CIGED CIGEN
A@® —x2)/rt 2Axm/rt O
= A[2wy/r% — 827 x,/78 + 2my/1t 4 dxy(ad — a2)/r0]€; = 0O
In a two dimensional incompressible steady flow, v, = —Az2/r* where 7%= 23 + 3.

Determine v, if vo=0 at x, =0 for all ;. Show that the motion is irrotational
and that the streamlines are circles.

From (5.5), v;; =0 or v,;=—v,,=24xx,/r* for this incompressible flow. Integrating
with respect to x, and imposing the given conditions on v, yields v, = Azx,/r2

For an irrotational motion, curlv =0. Here
curly = A[(a? —22)/rt + (—a +23)/m4]€; = 0

‘From Problem 4.7, page 118, the equations for streamlines are dx,/v, = dz,/v,. Here these
equations are =z, dx, + x,dz, = 0 which integrate directly into the circles :cf + z; = constant.

For a continuum whose constitutive equations are o, = (—p+ ,\*Dkk)sij + 2,u.*Dij,
determine the equations of motion in terms of the velocity v..

From (5.16), p%; = pb; + 0,5 or here p¥; = pb; — p ;8;; + N*Dyy, ;8;; + 2p*Dy; ;. By definition,
2D;; = vy,;+ vy,; so that Dy = vy, and 2D, = v; 55 + vj,;;.  Therefore
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PO = pbi — pi + (N u¥)y 5+ p* oy
In symbolic notation this equation is

pv = pb— Vp 4+ (\*+u*)V(V o v) + p*V2v

5.26. If the continuum of Problem 5.25 is considered incompressible, show that the diver-
gence of the vorticity vanishes and give the form of the equations of motion for
this case. ’

By (4.29), ¢; = gjV,; and divq = Vi, i — 0 since e is antisymmetric and vy, ; is sym-
metric in ¢ and j. Thus for V-.v =0 the equations of motion become pb; = pb; — p; + p*v; j;
or in Gibbs notation pv = pb — Vp + z*V2v.

5.27. Determine the material rate of change of the kinetic energy of the continuum which
occupies the volume V and give the meaning of the resulting integrals.

By (5.23), dK/dt=f pv0;dV. Also the total stress power of the surface forces is

A \4
f vitﬁ“)dS which may be written f vio;m; dS and by the divergence theorem (1.157) and the
s s
equations of motion (5.16) expressed as the volume integrals f vioyn; dS = f 0;v;,; AV +
s ‘ \4

f p(v0; — b)) dV.  Thus

v A
% = f pb;v, AV — f oiyvi; AV + f vt dS
\4 v S

This sum of integrals represents the rate of work done by the body forces, the internal stresses
and the surface stresses, respectively.

5.28. A continuum for which o> = A*D,, 8, + 2u*D,; undergoes an incompressible irrota-
tional flow with a velocity potential ¢ such that v = grad¢. Determine the dissipa-

.

tion function of? ¢,

Here o}’ &; = o{>’D;; = (\*Dyc8y; + 2u*Dyj)Dy; = 2u*Dy;D;; since Dy = vy, = 0 for incompres-

sible fiow. Also since v; = ¢ ;, the scalar D;D;; = ¢ ;;¢; and so ai(jD)Dij = 2u%¢,i19,i;-

Because the motion is incompressible and irrotational, ¢ ; =0 and 2¢ ;¢ = (8,:9,).5; =
V2(Vg)2. It is also interesting to note that
Vi) = (pp)uy = 2euye + 40,459, + 0,u9,5 T 28,ii9,4)
which for ¢ ; = 0 reduces to 4¢ ;¢,;. Thus ¢f> &; = u*V(Ve)? = p*Vi(s?)/2.

5.29. For a continuum with o, = —p8,, the specific enthalpy h =u+p/p. Show that the
energy equation may be written k =p/p +T$ using this definition for the enthalpy.

From (5.41), % = —pd;Dylp + Ts for the given stress; and by the result of Problem 5.13 and
the definition of k, & = h — p/p — pp/p2 = —pp/p? + T$. Canceling and rearranging, b = p/p + TS.

.

5.80. If the continuum of Problem 5.25 undergoes an incompressible flow, determine the
equation of motion in terms of the vorticity q in the absence of body forces and
assuming constant density.

For incompressible fiow, V+*v=10; and if b =0, the equation of motion in Problem 5.25
reduces to pv; = —p ; + u*v; 3;. Taking the cross product V X with this equation for p = constant

gives el g = —epqPia/p + W /p)epqiVijig- But €0 =0 and by (4.29) the result is ¢, =
(u*/p)q ;- In symbolic notation, dq/dt = (u*/p)V2q.
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Supplementary Problems

5.31. Show that for the rate of rotation vector @, % <%> = Q 'va .

5.32. Show that the flow represented by v, = —2xxe2s/rt, v, = (27 — 22)ag/r4, vy = wy/r2 where
r2 = x} 4 3, satisfies conditions for an incompressible fiow. Is this motion irrotational?

5.33. In terms of Cartesian coordinates z,y,z the continuity equation is
dp/ot + d(pv,)/ox + a(pvy)/ay + a(pv,)/oz = 0
Show that in terms of cylindrical coordinates r, 6, z this equation becomes

r(9p/dt) + d(rpv,)/or + 3(pv,)/38 + r(@(pv,)/32z) = 0

5.34. Show that the flow v, = (1 —172) cos /72, v, = (i+r2) sin 8/72, v, =0 satisfies the continuity
equation in cylindrical coordinates when the density p is a constant.

535. If P;; (x,t) is an arbitrary scalar, vector or tensor function, show that

f Pij..."pq”qu = f ["quij...,q'*'PPij.,.(".’p_bp)} av
s 14

5.36. If a continuum is subjected to a body moment per unit mass h in addition to body force b, and a
couple stress g™ in addition to the stress t®, the angular momentum balance may be written

d A A
—&*tfp(m+x><v)dV = f(h_{.x)(b)w_*_f(g(n)_*_xxt(n))ds
v \4 s

where m is distributed angular momentum per unit mass. If neGe= g™, show that the local form
of this relation is pdm/dt = h+ V-6 + Z,.

5.37. If a continuum has the constitutive equation o; = —ps;; + BD;; + aD;. Dy, show that oy =
3(—p — 2411,/3). Assume incompressibility, D; = 0.

5.38. For a continuum having ¢;; = —p8;;, show that du = Tds — pdv where in this problem v = 1/p,
the specific volume.

539. If Tds/dt = —v;;/p and the specific free energy is defined by ¥ = u — Ts, show that the energy
equation may be written p d¥/dt + ps dT/dt = o;;D;;.

5.40. For a thermomechanical continuum having the constitutive equation
oi; = Negxdi; + 2pey; — BN+ 24)a 8;(T — T)

where T, is a reference temperature, show that e, = 3a(T —T;) when o;; = s; = a;; — 05, 8;5/3.




Chapter 6

Linear Elasticity

6.1 GENERALIZED HOOKE’S LAW. STRAIN ENERGY FUNCTION

In classical linear elasticity theory it is assumed that displacements and displacement
gradients are sufficiently small that no distinction need be made between the Lagrangian
and Eulerian descriptions. Accordingly in terms of the displacement vector u;, the linear
strain tensor is given by the equivalent expressions

= = Ylow  ow) _ o Lllow | 9wy _
b= e = 2<aX1+aXi> = 2<ax,- +axi> RECEREY)
or (6.1)

L =E = }(uVg + Vxu) = $(uv, + V,u) = $(uV + Vu)

In the following it is further assumed that the deformation processes are adiabatic (no heat
loss or gain) and isothermal (constant temperature) unless specifically stated otherwise.

The constitutive equations for a linear elastic solid relate the stress and strain tensors
through the expression ~
oy = Ci].kmekm or Z =C:E (6.2)
which is known as the generalized Hooke’s law. In (6.2) the tensor of elastic constants
Cixm has 81 components. However, due to the symmetry of both the stress and strain
tensors, there are at most 36 distinct elastic constants. For the purpose of writing Hooke’s
law in terms of these 36 components, the double indexed system of stress and strain com-
ponents is often replaced by a single indexed system having a range of 6. Thus in the
notation

n — 9 Tg3 = T390 — 94
0y = 0, o5 = 05 = oy (6.3)
0'33 = 0'3 0’12 = 0’21 - 0’6
and ~ €, = g 2¢,; = 2¢;, = ¢,
G = & 2, = 2¢, = ¢ ' (6-4)
G = & 2¢, = 2¢,, = ¢
Hooke’s law may be written
op = Cyyey (K,M=1,2,3,4,5,6) (6.5)

where Ckm represents the 86 elastic constants, and where upper case Latin subscripts are
used to emphasize the range of 6 on these indices.

When thermal effects are neglected, the energy balance equation (5.32) may be written
du 1

)
ik - ;o’ijD“. = ;ai].ei]. (6'.6)

140




CHAP. 6] LINEAR ELASTICITY 141

The internal energy in this case is purely mechanical and is called the strain energy (per
unit mass). From (6.6), 1

du = “I')' T deij (67)

and if u is considered a function of the nine strain components, u = u(e,), its differential
is given by

_ ou
du = —aeﬁ de,; (6.8)
Comparing (6.7) and (6.8), it is observed that
1 U
;aij = I” (6.9)

The strain energy density u* (per unit volume) is defined as

u* = pu (6.10)

and since p may be considered a constant in the small strain theory, u* has the property that
ou ou*

%= g T o (6.11)

Furthermore, the zero state of strain energy may be chosen arbitrarily; and since the stress
must vanish with the strains, the simplest form of strain energy function that leads to a
linear stress-strain relation is the quadratic form
u* = %Cijkmeijekm (6.12)
From (6.2), this equation may be written
u* = %o, or u* = $Z:E (6.13)
In the single indexed system of symbols, (6.12) becomes
u* = %CKMGKGM (6.14)

in which Ckm = Cuk. Because of this symmetry on Cku, the number of independent elastic
constants is at most 21 if a strain energy function exists.

62 ISOTROPY. ANISOTROPY. ELASTIC SYMMETRY

If the elastic properties are independent of the reference system used to describe it, a
material is said to be elastically isotropic. A material that is not isotropic is called aniso-
tropte. Since the elastic properties of a Hookean solid are expressed through the coefficients
Cxu, a general anisotropic body will have an elastic-constant matrixz of the form

Cuiu Ciz Cis Cu Cis Cu
C21 C22 C23 C24 C25 C26
C31 C32 C33 C.‘}4 C35 C36
C = 6.15
[Crn] Cu Ci Cis Cu Css Cus (6.15)
Csi Cs: Css Csa Css Cse

Cai Co2 Coz Cos Coss Cas

When a strain energy function exists for the body, Ckm = Cmk, and the 36 constants in
(6.15) are reduced to 21.

»
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A plane of elastic symmetry exists at a
point where the elastic constants have the same
values for every pair of coordinate systems
which are the reflected images of one another
with respect to the plane. The axes of such
coordinate systems are referred to as ‘“‘equiva-
lent elastic directions.” If the z;x: plane is one
of elastic symmetry, the constants Ckwy are in-
variant under the coordinate transformation

Xl = 1, X = X, X3 = —xz (6.16)

as shown in Fig. 6-1. The transformation
matrix of (6.16) is given by

1 0 0
) = |0 1 0 (6.17)
0 0 -1

Inserting the values of (6.17) into the transformation laws for the linear stress and strain
tensors, (2.27) and (3.78) respectively, the elastic matrix for a material having zx; as a
plane of symmetry is

Cu Cp Ca 0 0 Cul
Cyi Co Cy 0 0 Cu
[CKM] — Cs1 Caz Cas 0 0 Css (6.18)
0 0 0 Cu Css O
0 0 0 Cs« Css O

L Cet Cop Coes 0 0 Css_

The 20 constants in (6.18) are reduced to 13 when a strain energy function exists.

If a material possesses three mutually perpendicular planes of elastic symmetry, the
material is called orthotropic and its elastic matrix is of the form

-

—Cu Ce Ciz O 0 0
Cai Cy2 Cis O 0 0
C C C 0 0 0
[Cru] = | o 7% 7% (6.19)
0 0 0 Cu O 0
0 0 0 0 Css O

(0 0 0 0 0 Co.

having 12 independent constants, or 9 if Ckm = Cuxk.

An axis of elastic symmetry of order N exists at a point when there are sets of equiva-
lent elastic directions which can be superimposed by a rotation through an angle of 2x/N
about the axis. Certain cases of axial and plane elastic symmetry are equivalent.

6.3 ISOTROPIC MEDIA. ELASTIC CONSTANTS

Bodies which are elastically equivalent in all directions possess complete symmetry and
are termed isotropic. Every plane and every axis is one of elastic symmetry in this case.

]
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For isotropy, the number of independent elastic constants reduces to 2, and the elastic
matrix is symmetric regardless of the existence of a strain energy function. Choosing as
the two independent constants the well-known Lamé constants, » and x, the matrix (6.19)
reduces to the isotropic elastic form ‘

A+ 2 A A 0 0 0
A A+ 2’.1. A 0 0 0
' 2 0
[Cr] = AoooA At o 0 (6.20)
0 0 0 n 0 0
0 0 0 0 n 0
.0 0 0 0 0 © ]
In terms of A and p, Hooke’s law (6.2) for an isotropic body is written
0y = Mgy T 2:“«‘55 or . Z = Me+ 24E (6.21)

where ¢=¢, =I.. This equation may be readily inverted to express the strains in terms
of the stresses as :
=X 1 —A 1

€ = msﬁakk + 2—“‘0'“. or E = ml@ + — 2“ 2 (6.22)

where ® = ¢,, = I, the symbol traditionally used in elasticity for the first stress invariant.
For a simple uniaxial state of stress in the x; direction, engineering constants E and v
may be introduced through the relationships o,, = Ee;, and ¢,, = ¢, = —ve;;,. The constant

E is known as Young’s modulus, and v is called Poisson’s ratio. In terms of these elastic
constants Hooke’s law for isotropic bodies becomes

_E y _E
o, = 115 <€ij + i—o, 8ij‘kk> or 2z = 11y <E + — =5, 2 > (623)
or, when inverted,
1+ 1+
& = “FooyFSow o E = “pTI-xle (6.24)

From a consideration of a uniform hydrostatic pressure state of stress, it is possible to
define the bulk modulus,
_ E _ 3a+2u
K=gi-gy o K=—"3
which relates the pressure to the cubical dilatation of a bpdy so loaded. For a so-called state
of pure shear, the shear modulus G relates the shear components of stress and strain. G
is actually equal to x and the expression

(6.25)

p = G = -2'-(‘1—E_‘|_T) (6.26)

may be proven without difficulty.

6.4 ELASTOSTATIC PROBLEMS. ELASTODYNAMIC PROBLEMS

In an elastostatic problem of a homogeneous isotropic body, certain field equations,
namely,

(a) Equilibrium equations,
+pb, =0 or V-Z+pb=0 (6.27)

T,
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(b) Hooke’s law,
o, = A, t+ 2pe; or Z = Me+ 24E (6.28)

ij
(¢) Strain-displacement relations,
¢; = ¥u,;+u,) or E= }uv+vu) (6.29)

must be satisfied at all interior points of the body. Also, prescribed conditions on stress
and/or displacements must be satisfied on the bounding surface of the body.

The boundary value problems of elasticity are usually classified according to boundary
conditions into problems for which

(1) displacements are prescribed everywhere on the boundary,
(2) stresses (surface tractions) are prescribed everywhere on the boundary,

(8) displacements are prescribed over a portion of the boundary, stresses are prescribed
over the remaining part.

For all three categories the body forces are assumed to be given throughout the continuum.

For those problems in whlch boundary displacement components are given everywhere
by an equation of the form
u, = gX) or u= gX) (6.30)
the strain-displacement relations (6.29) may be substituted into Hooke’s law (6.28) and the
result in turn substituted into (6.27) to produce the governing equations, .

pt F (A tpu, , +pb, = 0 or pV+(A+p)VVeu+pb =0 (6.31)

i 3hdi
which are called the Navier-Cauchy equations. The solution of this type of problem is
therefore given in the form of the displacement vector u;, satisfying (6.31) throughout the

continuum and fulfilling (6.30) on the boundary.

For those problems in which surface tractions are prescribed everywhere on the
boundary by equations of the form

t™ = om or t® = S-h | (6.32)

the equations of compatibility (3.104) may be combined with Hooke’s law (6.24) and the
equilibrium equation (6.27) to produce the governing equations,

1

“ij,kk 1+ o Trk.ij + P(bi j + b )

v
11—, 8yl = 0
or
V2E + ﬁ—VV@ + p(Vb+bV) + 1—:—v|pV'b = 0 (6.33)
which are called the Beltrami-Michell equations of compatibility. The solution for this
type of problem is given by specifying the stress tensor which satisfies (6.83) throughout
the continuum and fulfills (6.32) on the boundary.

For those problems having “mixed” boundary conditions, the system of equations (6.27),
(6.28) and (6.29) must be solved. The solution gives the stress and displacement fields
throughout the continuum. The stress components must satisfy (6.32) over some portion
of the boundary, while the displacements satisfy (6.30) over the remainder of the boundary.

In the formulation of elastodynamics problems, the equilibrium equations (6.27) must
be replaced by the equations of motion (5.16)

o5, pb, = p?')i or V- Z+pb = pv (6.34)
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and initial conditions as well as boundary conditions must be specified. In terms of the
displacement field «;, the governing equation here, analogous to (6.31) in the elastostatic
case is

+ (A tpu,  +eb, = ptt;,  or  pVu+(A+p)VViutpb = ol (6.85)

t

w5
Solutions of (6.35) appear in the form wu; = wi(x,t) and must satisfy not only initial condi-
tions on the motion, usually expressed by equations such as

u, = u(x,0) and u, = u,(x,0) (6.36)

1 (3

but also boundary conditions, either on the displacements,

u, = g(x,t) or u = gx,1) (6.37)-

1

or on the surface tractions,

HY = tP@x 1) or 0 = (®(x,1) (6.38)

6.5 THEOREM OF SUPERPOSITION. UNIQUENESS OF SOLUTIONS.
ST. VENANT PRINCIPLE

Because the equations of linear elasticity are linear equations, the principle of super-
position may be used to obtain additional solutions from those previously established. If,
for example, of,u{" represent a solution to the system (6.27), (6.28) and (6.29) with body
forces b, and o, u{® represent a solution for body forces b{*, then o, = of’> + o2,
u, = u{® +u{® represent a solution to the system for body forces b, = b{" + b{®.

The uniqueness.of a solution to the general elastostatic problem of elasticity may be
established by use of the superposition principle, together with the law of conservation of
energy. A proof of uniqueness is included among the exercises that follow.

St. Venant’s principle is a statement regarding the differences that occur in the stresses
and strains at some interior location of an elastic body, due to two separate but statically
equivalent systems of surface tractions, being applied to some portion of the boundary.
The principle asserts that, for locations sufficiently remote from the area of application
of the loadings, the differences are negligible. This assumption is often of great assistance
in solving practical problems.

6.6 TWO-DIMENSIONAL ELASTICITY. PLANE STRESS AND PLANE STRAIN

Many problems in elasticity may be treated satisfactorily by a two-dimensional, or
plane theory of elasticity. There are two general types of problems involved in this plane
analysis. Although these two types may be defined by setting down certain restrictions
and assumptions on the stress and displacement fields, they are often introduced descrip-
tively in terms of their physical prototypes. In plane stress problems, the geometry of
the body is essentially that of a plate with one dimension much smaller than the others.
The loads are applied uniformly over the thickness of the plate and act in the plane of the
plate as shown in Fig. 6-2(a) below. In plane strain problems, the geometry of the body is
essentially that of a prismatic cylinder with one dimension much larger than the others.
The loads are uniformly distributed with respect to the large dimension and act per-
pendicular to it as shown in Fig. 6-2(b) below.
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xy X3

(@) (b)
Fig. 6-2

For the plane stress problem of Fig. 6-2(a) the stress components oy, o,,, 0,, are taken
as zero everywhere, and the remaining components are taken as functions of x; and z» only,
Oap = 0ug(T,,2,) (¢, 8 =1,2) (6.39)

Accordingly, the field equations for plane stress are

(@) oapg+pbe =0 or VZ+pb=0 (6.40)
(b) o = e plwen or E = TEYS_ i
y (6.41)
€3 = _Eaaa .
(c) - g = st U, or E = }uv+ Vu) (6.42)
in which V = -8 +-—& and
In whic VvV = axlel axze2 n
O11 Og2 0 € €y O
b T, Og 0, E €o € 0 (6.43)
0 0 0 0 0

Due to the particular form of the strain tensor in the plane stress case, the six compatibility
equations (3.104) may be reduced with reasonable accuracy for very thin plates to the

single equation _
€1,00 T €o2,11 2‘12,12 (6-44)

In terms of the displacement components u,, the field equations may be combined to give
the governing equation

FE . K _ FE 9 F . .
2-——(1+V)Vua+———2(1_v)u,3,3a+pba =0 or ———-2(1+v)Vu+2(1_V)VV u + pb _(5(_)45)
o2 92 ' ’
2 = _Z__
where V2 = 5 amxﬁ )

For the plane strain problem of Fig. 6-2(b) the displacement component us is taken as
zero, and the remaining components considered as functions of z; and «: only,

Un = Ua(T1, X2) (6.46)
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In this case, the field equations may be written

(a) o T pb, = 0 or V'Z+pb =0 (6.47)
(b) Oag = Adgpey, T ey or Z = Me+ 24E
N (6.48)
Opy = VOae = m O aa

(¢) € = H(Ugp T Ugq) or E = 4{uVv + Vu) (6.49)

oy, o 0 €1 €12 0
in which zZ = o, 0, O and E = €, €& O (6.50)

0 0 o 0 O 0

33
From (6.47), (6.48), (6.49), the appropriate Navier equation for plane strain is
w2 g + A+ p)Ug g +pb, = 0 or uFut+ A+u)VV-ut+pb = 0 (6.51)

As in the case of plane stress, the compatibility equations for plane strain reduce to the
single equation (6.44).

~ If the forces applied to the edge of the plate in Fig. 6-2(a) are not uniform across the
thickness, but are symmetrical with respect to the middle plane of the plate, a state of
generalized plane stress is said to exist. In formulating problems for this case, the field
variables .5, ¢,, and u, must be replaced by stress, strain and displacement variables
averaged across the thickness of the plate. In terms of such averaged field variables, the
generalized plane stress formulation is essentially the same as the plane strain case if X is

replaced by o B
0 o v

A+2n T 12

by (6.52)

A case of generalized plane strain is sometimes mentioned in elasticity books when e,
is taken as a constant other than zero in (6.50).

6.7 AIRY’S STRESS FUNCTION

If body forces are absent or are constant, the solution of plane elastostatic problems
(plane strain or generalized plane stress problems) is often obtained through the use of the
Airy stress function. Even if body forces must be taken into account, the superposition
principle allows for their contribution to the solution to be introduced as a particular
integral of the linear differential field equations.

For plane elastostatic problems in the absence of body forces, the equilibrium equations
reduce to

oapg =0 or V-2 =0 (6.53)

and the compatibility equation (6.44) may be expressed in terms of stress components as

V2(0'11+0'22) =0, VZG)I =0 (6'.5/;)

The stress components are now given as partial derivatives of the Airy stress function
¢ = ¢(x1,22) in accordance with the equations

O = o O = TP, % = .11 (6.55)
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The equilibrium equations (6.53) are satisfied identically, and the compatibility condition
(6.54) becomes the biharmonic equation

V2(V2¢) = V4§b = ¢,1111 + 2¢‘1122 + ¢.2222 = 0 (6‘56)

Functions which satisfy (6.56) are called biharmonic functions. By considering biharmonic
functions with single-valued second partial derivatives, numerous solutions to plane elasto-
static problems may be constructed, which satisfy automatically both equilibrium and
compatibility. Of course these solutions must be tailored to fit whatever boundary
conditions are prescribed.

6.8 TWO-DIMENSIONAL ELASTOSTATIC PROBLEMS IN POLAR COORDINATES

Body geometry often deems it convenient to formulate two-dimensional elastostatic
problems in terms of polar coordinates r and 4. Thus for transformation equations

21 = rcoséb, 22 = rsind (6.57)

the stress components shown in Fig. 6-3 are found to lead to equilibrium equations in
the form -

do 1 0o, o,.—0C
(rr) 2 (re) (rr) (60) —
or r d4 + r + R 0 (6.58)
1 99, 99 1) 20("6) + = 0 6.59
r a0 ar T r ? (6.59)

in which R and @ represent body forces per unit volume in the directions shown.

T2 30(99) o

\

a,‘f

0(' \
9(68)

— "

Fig. 6-3

ocpey * 5o

6"(rv) dr

”(rr) +

Taking the Airy stress function now as @ = a(r, #), the stress components are given by

1 90® 1 o2
O'(ﬂ) = ; 5; + 7—36? (6.60)
Ooey = 0°0/072 (6.61)
19®
a(ro) = - “<T 69) ‘ (6.62)
The compatibility condition again leads to the biharmonic equation
ViHV*®) = Vi = 0 (6.63)
0 19 1 92

but, i 1 w2 sl
ut, in polar form, ¥ 7 T rar TR
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6.9 HYPERELASTICITY. HYPOELASTICITY

Modern continuum studies have led to constitutive equations which define materials
that are elastic in a special sense. In this regard a material is said to be hyperelastic if it
possesses a strain energy function U such that the material derivative of this function is
equal to the stress power per unit volume. Thus the constitutive equation is of the form

d 1 1,
%(U) = ;o’HD.. = ;aijcij (6.64)

ij

in which Dy is the rate of deformation tensor. In a second classification, a material is said
to be hypoelastic if the stress rate is a homogeneous linear function of the rate of deforma-
tion. In this case the constitutive equation is written

05 = Ky Diem ' (6.65)
in which the stress rate o is defined as
d .
0':; = a?(oij) - aiq qu - ajq ti (6.66)

where V is the vorticity tensor.

6.10 LINEAR THERMOELASTICITY

If thermal effects are taken into account, the components of the linear strain tensor €
may be considered to be the sum
€. = clij) + ci(jT) (6.67)

ij

in which ¢{® is the contribution from the stress field and (P is the contribution from the
temperature field. Due to a change from some reference temperature T, to the temperature
T, the strain components of an elementary volume of an unconstrained isotropic body are
given by

P = oT—T)s, (6.68)

where o« denotes the linear coefficient of thermal expansion. Inserting (6.68), together with
Hooke’s law (6.22), into (6.67) yields

1 A
& = §;(%ﬁmsmk> + oT—Ty)8, (6.69)

which is known as the Duhamel-Neumann relations. Equation (6.69) may be inverted to
give the thermoelastic constitutive equations
= A8eq T 2ue, — (BA+2w)ad, (T—T,) (6.70)

oij
Heat conduction in an isotropic elastic solid is governed by the well-known Fourier law

of heat conduction,

¢, = —kT,

i

1 (6.71)

where the scalar k, the thermal conductivity of the body, must be positive to assure a
positive rate of entropy production. If now the specific heat at constant deformation ¢ is
introduced through the equation

—C,; = pc“’)j' (6.72)

and the internal energy is assumed to be a function of the strain components ¢, and the

ij
temperature T, the energy equation (5.45) may be expressed in the form



150 LINEAR ELASTICITY [CHAP. 6

kT, = pe® T + (31 +2)aT, &, (6.73)
which is known as the coupled heat equation.

The system of equations that formulate the general thermoelastic problem for an
isotropic body consists of

(a) equations of motion . .
o,;Teb, =u or V- Z+pb=u (6.74)

(b) thermoelastic constitutive equations

g

g = A6 + 2ue, — (31 +2u)ad, (T — T,)
or (6.75)
2 = e+ 2/.LE — (3)\ + ZM)al(T — To)

(¢) strain-displacement relations

¢ = ¥u,;+u,) or E={uv+vu (6.76)

(d) coupled heat equation
KT, = pc®T + (Ba+2uaT 8, or KkV2T = pe®T + (31 +2u)aT,é (6.77)

This system must be solved for the stress, displacement and temperature fields, subject to
appropriate initial and boundary conditions. In addition, the compatibility equations must
be satisfied.

There is a large collection of problems in which both the inertia and coupling effects
may be neglected. For these cases the general thermoelastic problem decomposes into two
separate problems which must be solved consecutively, but independently. Thus for the
uncoupled, quasi-static, thermoelastic problem the basic equations are the

(a) heat conduction equation

KT . = pc®T or kV?T = pe®T (6.78)

»ii

(b) equilibrium equations
0y T pb, = 0 or V:'Z4+pb =0 (6.79)

(c) thermoelastic stress-strain equations

0; = A8, T+ 2/.1,(“. - (3r+ ZM)aSij(T — To)

or (6.80)
2 = M+ 2/J,E — (3)\ + ZM)al(T_ TO)

(d) strain-displacement relations

e, = $u,,+u,) or E=HVutuy) (6.81)

if
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Solved Problems

HOOKE’S LAW. STRAIN ENERGY. ISOTROPY (Sec.6.1-6.3)

6.1.

6.2.

6.3.

6.4.

6.5.

Show that the strain energy density #* for an isotropic Hookean solid may be
expressed in terms of the strain tensor by u* = A(trE)?/2 + nE:.E, and in terms of
the stress tensor by u* = [(1++)Z: Z — v(tr £)?]/2E.

Inserting (6.21) into (6.18), u* = (A8 ey + 2pe;) /2 = Nejiep/2 + pejze;  which in symbolic
notation is u* = A(tr E)2/2 + uE:E.

Inserting (6.24) into (6-13), u* = Uu[(l + P)Uij - Vsijakk]/zE = [(1 + r)aijaij - roiioﬁ]/ZE which in
symbolic notation is w* = [(1+»)Z:ZT — p(tr 2)2]/2E.

Separating the stress and strain tensors into their spherical and deviator components,
express the strain energy density u* as the sum of a dilatation energy density u(s
and distortion energy density u(p,.

Inserting (3.98) and (2.70) into (6.13),
u* = J(sy;+ ond;/3)es; + ep8is/3) = Flsyei; + 0yes/3 + syep/3 + oyey/3)

and since e; = s; = 0 this reduced to u* = ufs, + u?‘D) = oye;/6 + 5,5¢;5/2.

-

Assuming a state of uniform compressive stress o, =-—p3,, develop the formulas

for the bulk modulus (ratio of pressure to volume change) given in (6.25).

With o¢;; = —p8;;, (6.24) becomes ¢; = [(1+»)(—ps;;) + »5,4(3p))/E and so ¢; = [-3p(1+») +
9py]/E. Thus K = —p/e; = E/3(1— 2»). Likewise from (6.21), o; = (3\+2u)¢; = —8p so that
K = (3\ + 24)/3.

Express u;, and u,, of Problem 6.2 in terms of the engineering constants K and G

and the strain components.
From a result in Problem 6.3, o; = 3Ke; and so
ugsy = oue;/6 = Keyej/2 = K(I)%/2

From (6.21) and (2.70), oy = A8je + 2pey; = s + 055 5;/3 and since oy = (3N + 2p)e; it follows
that s; = 2u(e;; — € 8;5/3). Thus

u?‘D) = 2,u(eij — ekksij/3)(eij — epp8i5/3)/2 = ,u(eijeij- — eiieﬁ/3)

Note that the dilatation energy density u’fs) appears as a function of K only, whereas the distortion
energy u(p, is in terms of u (or G), the shear modu}us,

In general, u* may be expressed in the quadratic form u* = C:McKcM in which the
C}, are not necessarily symmetrical. Show that this equation may be written in the
form of (6.14) and that ou*/de, = o,.

Write the quadratic form as

w* = %C;MGKGM + %C;MGKGM = %C;MGKGM + %C;NGNGP = %(C;M + CI\TIK)GKGM = '%CKMGKGM
where Cyy = Cyxk.

Thus the derivative du*/deg is now

du*/deg = ICxmlex,rem + exem,r) = 3Ckm(Skrem + exdyr) = $(Crmem + Ckrex) = Crmem = or
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