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Solved Problems

HOOKE’S LAW. STRAIN ENERGY. ISOTROPY (Sec.6.1-6.3)

6.1.

6.2.

6.3.

6.4.

6.5.

Show that the strain energy density #* for an isotropic Hookean solid may be
expressed in terms of the strain tensor by u* = A(trE)?/2 + nE:.E, and in terms of
the stress tensor by u* = [(1++)Z: Z — v(tr £)?]/2E.

Inserting (6.21) into (6.18), u* = (A8 ey + 2pe;) /2 = Nejiep/2 + pejze;  which in symbolic
notation is u* = A(tr E)2/2 + uE:E.

Inserting (6.24) into (6-13), u* = Uu[(l + P)Uij - Vsijakk]/zE = [(1 + r)aijaij - roiioﬁ]/ZE which in
symbolic notation is w* = [(1+»)Z:ZT — p(tr 2)2]/2E.

Separating the stress and strain tensors into their spherical and deviator components,
express the strain energy density u* as the sum of a dilatation energy density u(s
and distortion energy density u(p,.

Inserting (3.98) and (2.70) into (6.13),
u* = J(sy;+ ond;/3)es; + ep8is/3) = Flsyei; + 0yes/3 + syep/3 + oyey/3)

and since e; = s; = 0 this reduced to u* = ufs, + u?‘D) = oye;/6 + 5,5¢;5/2.

-

Assuming a state of uniform compressive stress o, =-—p3,, develop the formulas

for the bulk modulus (ratio of pressure to volume change) given in (6.25).

With o¢;; = —p8;;, (6.24) becomes ¢; = [(1+»)(—ps;;) + »5,4(3p))/E and so ¢; = [-3p(1+») +
9py]/E. Thus K = —p/e; = E/3(1— 2»). Likewise from (6.21), o; = (3\+2u)¢; = —8p so that
K = (3\ + 24)/3.

Express u;, and u,, of Problem 6.2 in terms of the engineering constants K and G

and the strain components.
From a result in Problem 6.3, o; = 3Ke; and so
ugsy = oue;/6 = Keyej/2 = K(I)%/2

From (6.21) and (2.70), oy = A8je + 2pey; = s + 055 5;/3 and since oy = (3N + 2p)e; it follows
that s; = 2u(e;; — € 8;5/3). Thus

u?‘D) = 2,u(eij — ekksij/3)(eij — epp8i5/3)/2 = ,u(eijeij- — eiieﬁ/3)

Note that the dilatation energy density u’fs) appears as a function of K only, whereas the distortion
energy u(p, is in terms of u (or G), the shear modu}us,

In general, u* may be expressed in the quadratic form u* = C:McKcM in which the
C}, are not necessarily symmetrical. Show that this equation may be written in the
form of (6.14) and that ou*/de, = o,.

Write the quadratic form as

w* = %C;MGKGM + %C;MGKGM = %C;MGKGM + %C;NGNGP = %(C;M + CI\TIK)GKGM = '%CKMGKGM
where Cyy = Cyxk.

Thus the derivative du*/deg is now

du*/deg = ICxmlex,rem + exem,r) = 3Ckm(Skrem + exdyr) = $(Crmem + Ckrex) = Crmem = or



152

6.6.

6.7.

LINEAR ELASTICITY [CHAP. 6

Show that for an orthotropic elastic continuum
(three orthogonal planes of elastic symmetry)
the elastic coefficient matrix is as given in
(6.19), page 142,

Let the z,2, (or equivalently, z{z3) plane be a
plane of elastic symmetry (Fig. 6-4). Then og = Cxpem
and also ox = Ckyey. The transformation matrix
between z; and z; is

1 0 0
[ay] = 0o 1 o
0 0 -1 Fig. 6-4
and from (2.2?) and (3.78), o =og, ex =ex for K=1,2,3,6 whereas og = —og, ex = —ex

for K =4,5. Thus, for example, from of = C e,
0{ = 0 = Cllel + C12€2 + 01363 - Cl4€4 - 01565 + C1656
But from o, = Cyprep,

03 = Cney + Croep + Crgeg + Craeq + Cyses + Crgen

These two expressions for ¢; =0, are equal only if C,4 = C;5=0. Likewise, from o3 = oy,
Gé =03 04 = —0y, Ué = —0os, 08' = og it is found that Cz4 = Czs = C34 = C35 = C64 = C65 = C4l =
Cyp = Cy3=C51 = C50 = C53 = C54 = 0.

If 2,23 (or 252y) is a second plane of elastic symmetry such that of = Cgpepy, the trans-
formation array is

-1 0 0
[ay] = 0 1 o0
0o 0 1
and now from (2.2?) and (8.78), ok =ox, e =—ex for K =1,2,8,4 whereas ox = —og,

ex = —exg for K=5,6. Now Cyg=Cy=Cg4=Cy5= Csq4 = Cq = Cgg = Cq3 =0 and the elastic

-coefficient matrix attains the form (6.19). The student should verify that elastic symmetry with

respect to the (third) z,z; plane is identically satisfied by this array.

Give the details of the reduction of the orthotropic elastic matrix (6.19) to the
isotropic matrix (6.20).

For isotropy, elastic properties are the same with respect to all Cartesian coordinate axes.
In particular, for the rotated z; axes shown in Fig. 6-5, the method of Problem 6.6 results in the
matrix (6.19) being further simplified by the conditions C;; = Cgy = Cg3, Cyy = Cs55 = Cqg, and
Cig = Cgy = Cy3= Cgy = Cy3 = Cy.

Fig. 6-5 Fig. 6-6
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Finally, for the axes ;' obtained by a 45° rotation about z; as in Fig. 6-6 above, the transformation

matrix is
V2 1/2 o
[a;] = | -1V2 12 o

0 0 1

so that ag = (0,—0))/2 =(Cy; —Cio)e;—¢)/2 and e =e;—¢. But of = Cueg and so
2Cy = Cy; — Cyp. Thus defining x = Cyy and A = Cy,, (6.20) is obtained.

6.8. Give the details of the inversion of (6.21) to obtain (6.22).

From (6.21) with = j, 0; = (3}\ + 2/‘)51111 and so 2f‘eij = 05 — >\8i]'akk/(3>\+ 2/1) or e€; = Gi]'/z/t -
}\5i]'0kk/2,u(3>\ + 2[!).

6.9. Express the engineering constants v and E in terms of the Lamé constants A and g.

From (6.25), E/(1 —2v) = 3\ + 2u; and from (6.26), E/(1+v) =2u. Thus (BA+2u)(1—2v) =
24(1 +v) from which v = A/2(A+ x). Now by (6.26), E = 2u(1+ v) = u(B\+ 2u)/(\ + n)-

6.10. Determine the elastic coefficient matrix for a continuum having an axis of elastic
symmetry of order N =4. Assume Ckm = Cuxk.

Let x; be the axis of elastic symmetry. A rota-
tion 6 =27/4 = #/2 of the axes about z; produces
equivalent elastic directions for N =4, The trans-
formation matrix is

0o 1 o

[e) = -1 0 o0

0 0 1
and by (2.27) and (3.78), oy =0y, o03=o0y, 03 =03
04 = —05, 05 = 04, 05 = 05 and e] = €y, & = €1, €3 = €3,
es = —es5, € = €4, €g = —eg. Thus, for example, from

Ué =03 C34 = C35 = Cae =0, C31 = C32. Likewise, from
the remaining five stress relations, the elastic matrix

becomes Fig. 6-7

Cu Gz Cys 0 Cie
Clz Cn Cis 0 —Cy
Cs GCiz Cg 0 0

C =

[Crcu] 0 0 0 Cy4 0 0
0 0 0 0 Cy4 O
Cie —Cie 0 0 Ce

with seven independent constants.

ELASTOSTATICS. ELASTODYNAMICS (Sec. 6.4-6.5)
6.11. Derive the Navier equations (6.31).

Replacing the strain components in (6.28) by the equivalent expressions in terms of displace-
ments yields oy = A8juy, . + wlu; ;+u;1). Thus 5,5 = Ay, ki + slu;, 35+ u;,;).  Substituting this
into the equilibrium equations (6.2?) and rearranging terms gives uu; ;; + (A + p)u; 5 + pb; = 0.
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6.12.

6.13.

6.14.

6.15.
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Show that if V=0, the displacement wu; = (A +2u)F;,/p(A+ ) — Fii/n is a
solution of the Navier equation (6.31) for zero body forces.

Differentiating the assumed solution, the terms uu;; = (A + 2u)F /(N + 8) — Fi iy and
A+ wuy i = N+ 20)F; i/ — N+ p)Fy kji/e are readily calculated. Inserting these into (6.31)

gives
A+ 20)F; i/ N+ ) — [ — N+ 20) + A+ w)]F i = 0
pl‘OVided Fi, kkji = v4Fi = 0.

If body forces may be neglected, show that (6.35) is satisfied by u, = ¢, + ¢, ¥,
provided ¢ and y, each satisfies the familiar three dimensional wave equation.
Substituting the assumed u; into (6.35) yields
wle, ik + intiiaa) T O+ 0855 + eipa¥api) = (% F emvr,j)
Since ejpqvq,psi = 0, this equation may be written
(A + 20061k — p$),i + eik(ivi,qq — P¥R),; = O
which is satisfied when V2 = pg/(A+24) and V2, = pyi/p.

Writing ¢?V2 = ¢ where ¢2= (A +2u)/p for the wave equation derived in Problem

6.13, show that ¢ = 2+ J; h(r — ct)

tions of their arguments and 72 = xix:.

is a solufion with ¢ and & arbitrary func-

Here it is convenient to use the spherical form V2 = 1%6—6— <’r2 aa—> since ¢ = ¢(r, t). Thus
r r

r2(dp/dr) = r(g’ + k') — (9 + h) where primes denote derivatives with respect to the arguments of
g and h. Then V2 = (9" +h")/r. Also ¢ = (9'c—hkc)/r and ¢ = c2(g” + k"')/r. Therefore
¢2V2¢ = ¢ for the given ¢.

Derive the Beltrami-Michell equations (6.33) and determine the form they take when
body forces are conservative, i.e. when pb, = ¢ ,.
Substituting (6.24) into (3.103) yields
A+ )i, km T Okm,i5 — ik, im — Fgmik) = v(8:0,km T Skm©,i5 — 8k, im — 8jm©, i)

where © = Iz = ¢;. Only six of the eighty-one equations represented here are independent. Thus
setting m = k and using (6.27) gives

ok T ©,55 1+ p(by; + b5) = v(8;;0 1 + ©,5)/(1+)

from which @, = —(1+v)pby /(1 —v). Inserting this expression for O, into the previous
equation leads to (6.33).

If pb;= 9, then p(b,; + b;;) =2¢ ;; and pby = ¢, xx = V3¢ so that (6.33) becomes
Vzai]- + 9,{]’/(1 + V) + 2¢,ij + llsijv2¢‘/(1 - V) =0

TWO-DIMENSIONAL ELASTICITY (Sec. 6.6-6.8)

6.16.

For plane stress parallel to the x,22 plane, develop the stress-strain relations in terms
of » and p. Show that these equations correspond to those given as (6.41).

Here o033 = 013 =093 =0 so that (6.21) yields ¢3 = €3 =0 and eg3 = —Aey + e90)/(A+ 2p).
Thus (6.21) reduces to o,5 = 2N\udgpeyy /(N + 2u) + 2pe,z With a, 8,y = 1,2 from which o,, =
2u(3\ + 2u)ey /(N + 24) so that the equation may be inverted to give

€ap = NS0y, /2u(3N+ 2u) + 045/28 = —r84p0,/E + (14 v)oys/E

Also, €33 = —Aey,/(N+2p) = —Ney,/2u(BN+24) = —vo,,/E
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6.17.

6.18.

6.19.

6.20.

6.21.

For plane strain parallel to xi2., develop the stress-strain relations in terms of v and
E. Show that these equations correspond to those given as (6.48).

Here u; =0 so that e;3 =0 and (6.24) gives o033 = v(oyy T 099) = Ao /2(A + ). Thus (6.24)
becomes e,z = (1+v)agg/E — v(l +v)8,50,,/E  from which e,, = (1+v)(1~2v)o,,/E. Finally,

inverting,
0o = vES8qge,,/(1+v)(1—20) + Eeup/(L+v) = NSypeyy T 2ueqp

Develop the Navier equation for plane stress (6.45) and show that it is equivalent to
the corresponding equation for plane strain (6.51) if A" = 2xu/(A +2u) is substituted
for A,

Inverting (6.41) and using (6.42) leads to o045 = E(uq,p+ug4)/2(1 +v) + 20E8qu, ,/2(1 — v2).
Differentiating with respect to #; and substituting into (6.40) gives

Bug 05/2(1+v) + Bug 5o /2(1 —v) + pbq = w2y + p(3N+ 2u)ug, go/ (N + 28) + pbg = 0

Thus since u(38\ + 2u)/(A + 2x) = @A/ (A + 2u) +u) = (N +u), (6.45) and (6.51) have the same form
for the given substitution. '

Determine the necessary relationship between the constants A and B if ¢ =
Axixi + Bxj is to serve as an Airy stress function.

By (6.56), ¢ must be biharmonic or ¢ ;,; + 2¢ 1100 + ¢,2000 = 0 + 24Ax, + 120Bx, = 0, which
is satisfied when A = —5B.

3
Show that ¢ = i——f[ X122 — %2-] + % x% is suitable for use as an Airy stress function

and determine the stress components in the region z, >0, —c <z:< c.

Since V4¢ is identically zero, ¢ is a valid stress function. The stress components as given by

(6.55) are oy, = ¢9y = —3F2,2,/2¢% + P/2¢, o3 = —¢,15 = —3F(c2 — x2)/4¢%, o0yy = ¢4 = O.

These stresses are those of a cantilever beam subjected to a transverse end load F and an axial
pull P (Fig. 6-8).

911 712

AAR TR TR R T R TERTRRRRTTTERY

Ly

Fig.6-8

In Problem 2.36 it was shown that the equilibrium equations were satisfied in the
_ - . .

absence of body forces by o, = €ipqSmn Pan, pm° Show that Airy’s stress function is

represented by the case ¢,, = ¢(2,,2,) With ¢, = ¢y, = ¢, = b, = ¢,; = 0.

Since ¢35 is the only non-vanishing component, o¢;; = eipq€jmnPqn,pm bDECOMES 0;; = €;,3€;3 B33, pm
which may be written o, = egy36pr3#35,4¢- Thus since @g3 =9, 045 = (8apdyr — Sar8yple, vt =
8ap® vy — ,ap- Lhe stress components are therefore oy1 = ¢,11 + 8,20 — ,u1 = 9,22, 012 = %12
922 = du1 T 22— S92 = 11
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6.22. In polar coordinates (r, §) the Airy stress function 2 BN
® = B is used in the solution of a disk of radius \
a subjected to a central moment M. Determine the /
stress components and the value of the constant B. \ l

From (6.60) and (6.61), o(,, = 0(gsy =0. From (6.62) /
0.9y = B/r2. Equilibrium of moments about the center of 0(19)\

27 27
the disk requires M = f ocrgya2ds = Bds = 2zB. -~
Thus B = M/2x. 0 0 Fig. 6-9

LINEAR THERMOELASTICITY (Sec. 6.10)

6.23. Carry out the inversion of (6.69) to obtain the thermoelastic constitutive equations
(6.70).

From (6.69) with i =j, oy = (8\+ 2u)(e;; — 3a(T — Tp)). Solving (6.69) for o;; gives
o = 2ue; + >\5ij‘7kk/(3>\ + 2u) — 2ﬂa8i]-(T —Ty)

2pe; + Nyjlerr — 3a(T — Tp)) — 2uady(T — T)

2ue;; + NSizerr — (BN + 2p)ady(T — T')

6.24. Develop the thermoelastic energy equation (6.738) by use of the free energy f=u—"Ts.

Assuming the free energy to be a function of the strains and temperature, f = f(e;, T) and
substituting into (5.41) pu = oyét+ oTs where dots indicate time derivatives, the result is
(0i;— pdf/des;) &; — p(8 +0f/dT)T = 0. Since the terms in parentheses are independent of strain
and temperature rates, it follows that o¢;; = pdf/d¢;; and s = —9f/dT. From (5.88) for a reversible

isothermal process, —¢;; = oT3 = pT :_s & +a§% T> . At constant deformation, ¢; =0 and
eij

comparing this equation with (6.72) gives ¢® = T(d8/8T) or from above, since 98/0T = —92f/3T?,
¢ = —92f/gT2.  Also, from above, p(02f/9¢;0T) = d0;;/0T and so combining (5.38) with (6.71),

do;; (v) *
—C,; = kT}ﬁ = pT<'a—71,—] él]"}'gil:" T>. Finally from (6-70), aa,j/BT = (3}\'*'2/1)&5”7'0 so that

KT ; = pcT + (3N + 2u)aTye; which is (6.73).

6.25. Use (6.13) and (6.70) to develop the strain energy density for a thermoelastic solid.
Substituting (6.70) directly into (6.13), '
w* = ASyeeke/2 + pee; — B\ + 2u)adiy(T — To)ey/2
= Aeei/2 + pegie; — (BN + 2p)alT — Ty)e/2

MISCELLANEOUS PROBLEMS

6.26. Show that the distortion energy density uz"D) may be expressed in terms of princinal
stress values by the equation u,, = [(o,— 0))* + (0, — 0,)* + (0, — 0,)?]/12G.

From Problem 6.2, u{p, = 8;;¢;//2 = 8,;8;;/4G which in terms of stress components becomes
Ulpy = (04— 8;j0k1/3) (035 — 8;j0,p/3)/AG = (oy50: — 0,103/3)/4G
In terms of principal stresses this is
wipy = [oF + 03 + a5 — (03 + 0yt 05)(0y + 0 + 05)/3]/4G
= [2(63 + 0} + 02 — 005 — 0305 — 0301)/3]/4G
= [(oy —02)% + (02— 05)2 + (03— 01)%]/12G
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6.27. Use the results of Problem 6.1 to show that for an elastic material du*/d¢; = ¢, and
au*/aa“ = g0
From Problem 6.1, u* = \eje;;/2 + pejie;; and so
du*/9epq N 2[e;1(eji/Depq) T €55 (Dei/deng)] + 2ueij(Bey/ depq)
M2[e;8 55850 + €8ipBiq] + 2ueiSipdiq = M2[eudpq T €j8pq] + 2uepq

= Nedpg + 2ueq = 0y

Likewise from Problem 6.1, u* = [(1 + v)o;;0;4 = voy0;5]/2E and so

3oy = [2(1+ v)oydi8iq — v(oudpq + 058pgl/2E = [(1+ v)opg — v8pqou]l/E = epq

6.28. Express the strain energy density #* as a function of the strain invariants.

From Problem 6.1, u* = \eyej;/2 + ueyyey; and since by comparison with (3.91), I =¢; and
IIE = (eﬁsﬁ— sijs,-]-)/2, it follows that

wt = MIp¥2 + a(-200+ () = (M2 + p)(Ip)* — 2411

6.29. When a circular shaft of length L and radius
a is subjected to end couples as shown in Fig.
6-10, the nonzero stress components are
o3 = —Gax,, 0,y = Gax, where a is the angle
of twist per unit length. Determine expres-
sions for the strain energy density and the
total strain energy in the shaft.

From Problem 6.1, u* = [(1+»)Z:Z — »(tr £)2)/2E.
Here trX = 0 and 2:2 = 2G2a272 where 72 =
a +x2.  Thus u* = Ga2?/2. The total strain
energy is given by Fig. 6-10

G2 (° (¥ "
U = f wav = 2 f f f Pdrdsdey; = GolairL/4
\%4 1} 0 0

2w a
Note that since T = f f Ga(mf + xg)'r drde = Gaair/2, U = TaL/2, the external work.
0

6.30. Show that for a continuum having an axis of elastic symmetry of order N =2, the
elastic properties (Hooke’s law and strain energy density) are of the same form as a
continuum having one plane of elastic symmetry.

Here a rotation of axes 6 = 2z/N = 27/2 = r produces equivalent elastic directions. But this
is precisely the same situation as the reflection about a plane of elastic symmetry.

6.31. ShOW that (6.19) with C11 = sz = C33, C44 =
Css = Ces and C;» = Ci3 = Cz2; may be reduced to
(6.20) by an arbitrary rotation 6 of axes about s
(Fig. 6-11).

The transformation between x; and x| axes is
cosg sing O
a; = —sing cose 0
0 0 1

and from (2.27),
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6.32.

6.33.

6.34.

6.35.

6.36.
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0i = (—sin 6 cos6)oy; + (cos28 — sin26)o,, + (Sin g cos 6)ogy
or in single index notation,
0g = (—sing cosb)o; + (cos26 — sin26)ag + (sin 6 cos g)o,
Likewise from (3.78) and (6.4),
¢ = (—2sing cosf)e + (cos2g — sin26)eg + (2 sin 6 cos g)ey

But og = Cyueq for an isotropic body and so here o3 — 0 = 2Cy(e3 — ¢,). Finally from (6.19) with
the given conditions, o; = Cjje; + Cioleg+¢) and o5 = Cijep + Crofle; T €) and so oy — 07 =
(Cll - C12)(€2_ El). Therefore (Cll - C12) = 2C44 and with C44 = U, C12 =X\ Cll =+ 2/1 as
given in (6.20).

For an elastic body in equilibrium under body forces b; and surface forces t{a’, show
that the total strain energy is equal to one-half the work done by the external forces
acting through their displacements ;.

It is required to show that f obu; dV + f (")ul as = 2 f u* dV, Consider first the surface

integral with t“‘ = g,u; and convert by Gauss’ theorem. Thus
Ji%i

f o5 Uy as = f (Ui]'ui),]' av = f (”ij,jui + aijui.j) av
S

But oju;; = oy(ey + w;5) = 0465, and from equilibrium oy, ; = —pb;.  Thus

f M ds = —f pbay dV + 2foﬁeij/2 av
S v

and the theorem is proved.

Use the result of Problem 6.32 to establish uniqueness of the elastostatic solution of a
linear elastic body by assuming two solutions o{”, u{" and o{?>, u{®.

(2 (1) ()
t

For linear elasticity superposition holds, so o;; = o{jl) =0y, w = uy would also be

a solution for which b; = 0. Thus for this “difference” solution f tﬁ")ui ds = 2f u*dV from
s v

Problem 6.32. Since the two assumed solutions satisfy boundary conditions, the left hand integral

A
is zero here since t{™ = ¢t — t¥ on the boundary for equation (6.32) and u; = u{" —u{® on

the boundary for equation (6.30). Thus f u*dV = 0 and since u* is positive definite this occurs
v
only if ¢; = e(jl) — 5(2) =0, or ei(].” = egf). If the strains are equal for the two assumed solu-

tions, the stresses are also equal by Hooke’s law and the displacements are equal to within a rigid
body displacement. Thus uniqueness is established.

The Navier equations (6.31) may be put in the form puwij + —5- 1-39, 2 U, ji + pbi = 0

which for the incompressible case (v = %) are clearly indeterminate. Use the equilib-

2

rium equations for this situation to show that uui; + ©,:/3 + pbi = 0.
From equation (6.24), ¢; = (1 —2v)o/E; and for » =14, ¢; =wu;; =0. Thus from (6.24),
s = Wiy + Uy = 2(1+ oy /E — 20805, /E
But %; ;=0 and E=38G when »=1, so that u;;; = —pb/G — 0y, /3G or uV2u;+ /8 +pb;=0.

Supplementary Problems

Prove that the principal axes of the stress and strain tensors coincide for a homogeneous isotropic
elastic body.

Develop the expression for the strain energy density u* for an orthotropic elastic medium. Use
equations (6.14) and (6.19).

Ans, u* = (C11€1 + 2C12€2 + 201365)61/2 + (C22€2 + 2C23€4)€2/2 + C33€§ + C44€2 + C55€§ + CGGEg-
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6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

6.50.

Determine the form of the strain energy density for the case of (a) plane stress, (b) plane strain.
Ans. (@) u* = [0} + o3y — 2voy100 + 2(1 + »)als)/2E
(®) w* = (u+M2)(ed + e2p) + Aeyreny + 2puely

Determine the value of ¢ for which u; = A sin-2—l£(acl *et), uy=u3 =0 is a solution of equation

(6.35) when body forces are zero. Ans. ¢c=vV(\+2u)/p

Show that the distortion energy density u?D) = (005 — 0404;/3)/4G and the dilatation energy density
u:‘s) = “ii"jj/ISK- .

Show that 1/(1+») = 2(A+ u)/(B\+24) and »/(1—») = N (A +2p).

For plane strain parallel to x;x5 show that b; =0 and that b, and b, are functions of x; and
xy only.

Use the transformation laws for stress and strain to show that the elastic constants Cy,, are the
components of a fourth order Cartesian tensor so that Cjum = @ip@iq@r®mnsCpgrs:

Show that the Airy stress function ¢ = 2x‘f + 12x?x§— 6x§ satisfies the biharmonic equation
V4 =0 and determine the stress components assuming plane strain.

xf - 3x§ —2x12, 0
Ans. oy = 24| —2zyx, 2i+ad 0
0 0 2y(x% - xg)

Determine the strains associated with the stresses of Problem 6.43 and show that the compatibility
equation (6.44) is satisfied.

:cf - 3x§ - 2v(a;f - mg) —2x,%y 0
Ans. ¢ = 24 <1 ; "> —2x1%, z? + 22 —2v(z% —x2) 0
0 0 0

For an elastic body having an axis of elastic symmetry of order N = 6, show that Cyy = Cyy,
Css = Cy, Cgg = 2(Cy; — Cyp) and that C;; and Cj; are the only remaining nonzero coefficients.

Show that for an elastic continuum with conservative body forces such that pb, = Vy =y 4, the
compatibility condition (6.44) may be written V2o,, = V2y/(1—») for plane strain, or
V20, = (1+»)¥2y for plane stress.

If V4F; =0, show that u; = 2(1—»)V2F;/G — F; /G is a solution of the Navier equation (6.31)

when b, =0 (see Problem 6.12). If F = B(x,€; —x,€,)/r where 72 = xm; determine the stress
components..

Ans. o1 = —oy9 = 6QGx1xo/75, 633 = 0, 049 — 3QG(x§-—x§’)/r5, 015 = —0a95 = 3QGxyxs/r5, where
Q = 4B(1 —»)/G.

In polar coordinates an Airy stress function is given by & = Cr2(cos 26 —cos2q¢) where C and «

are constants. Determine C if 699 =0, o0,=7 when ¢ =« and ogp =0, o,9= —7 when

= —a. Ans. C = 7/(2 sin 2q)

Show that in plane strain thermoelastic problems o33 = »(0y; + 095) — ¢E(T —T) and that o,z =
NSopeaq T 2ueqg — 84g(8N + 2u)a(T — Tp). In plane stress thermoelasticity show that

33 = —oy+o)/E+ a(T—Tp) and egg = (1+ )ogs/E — 1844000 /E + 805 (T — Toa

In terms of the Airy stress function ¢ = ¢(x, x,), show that for plane strain thermoelasticity the
compatibility equation (6.44) may be expressed as Vi = —aEV2(T — Ty)/(1 —») and that for plane
stress as Vip = —aEVHT —T,).

-




Chapter 7

Fluids

7.1 FLUID PRESSURE. VISCOUS STRESS TENSOR. BAROTROPIC FLOW

In any fluid at rest the stress vector t{'A" on an arbitrary surface element is collinear with
the normal n of the surface and equal in magnitude for every direction at a given point.
Thus

ti” = oym = —pm,  or t® = I-f = —p, 0 (7.7)

in which p, is the stress magnitude, or hydrostatic pressure. The negative sign indicates a
compressive stress for a positive value of the pressure. Here every direction is a principal
direction, and from (7.1) ‘
o;, = —D,8, or Z = —pl (7.2)

1

which represents a spherical state of stress often referred to as hydrostatic pressure.
From (7.2), the shear stress components are observed to be zero in a fluid at rest.

For a fluid in motion, the shear stress components are usually not zero, and it is cus-
tomary in this case to resolve the stress tensor according to the equation

o, = —P§;+17, or Z = —pl+r (7.3)

LY

where 7, is called the viscous stress tensor and p is the pressure.

All real fluids are both compressible and viscous. However, these characteristics vary
widely in different fluids so that it is often possible to neglect their effects in certain situa-
tions without significant loss of accuracy in calculations based upon such assumptions.
Accordingly, an inviscid, or so-called perfect fluid is one for which r, is taken identically
zero even when motion is present. Viscous fluids on the other hand are those for which
7,; must be considered. For a compressible fluid, the pressure p is essentially the same as
the pressure associated with classical thermodynamics. From (7.3), the mean normal stress

is given b
£ Y o, = —p+4r, or 0 = —p+ 37 (7.4)

For a fluid at rest, Ty vanishes and p reduces to p, which in this case is equal to the negative
of the mean normal stress. For an incompressible fluid, the thermodynamic pressure is
not defined separately from the mechanical conditions so that p must be considered as an
independent mechanical variable in such fluids.

In a compressible fluid, the pressure p, the density p and the absolute temperature T are
related through a kinetic equation of state having the form

» = pp, T) (7.5)
An example of such an equation of state is the well-known ideal gas law
p = pRT (7.6)
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where R is the gas constant. If the changes of state of a fluid obey an equation of state
that does not contain the temperature, i.e. » = p(p), such changes are termed barotropic.
An isothermal process for a perfect gas is an example of a special case which obeys the
barotropic assumption.

7.2 CONSTITUTIVE EQUATIONS. STOKESIAN FLUIDS. NEWTONIAN FLUIDS

The viscous stress components of the stress tensor for a fluid are associated with the
dissipation of energy. In developing constitutive relations for fluids, it is generally assumed
that the viscous stress tensor =, is a function of the rate of deformation tensor D,. If the
functional relationship is a nonlinear one, as expressed symbolically by

= fy(D,) or = D) (7.7)

the fluid is called a Stokesian fluid. When the function is a linear one of the form

~

vy = KD,y or I =K:D (7.8)

iipq
where the constants Ky, are called viscosity coefficients, the fluid is known as a Newtonian
fluid. Some authors classify fluids simply as Newtonian and non-Newtonian.

Following a procedure very much the same as that carried out for the generalized
Hooke’s law of an elastic media in Chapter 6, the constitutive equations for an isotropic
homogeneous Newtonian fluid may be determined from (7.7) and (7.3). The final form is

oy = —D8,+A*8, D, +2u*D, or I = —pl+A*I(trD) + 2,*D (7.9)
where A* and u* are viscosity coefficients of the fluid. From (7.9), the mean normal stress
is given by

%aﬁ = —p + 3(Br* +2/J,*)Dii = -p+ K*Du
or (7.10)
3(trZ) = —p + $@BA* +2u*)(trD) = —p + «*(trD)

where x* = §(8A* +2u*) is called the coefficient of bulk viscosity. The condition that
K= a*+ 3 =0 (7.11)

is known as Stokes’ condition, and guarantees that the pressure p is defined as the average
of the normal stresses for a compressible fluid at rest. In this way the thermodynamic
pressure is defined in terms of the mechanical stresses.

In terms of the deviator components s, = o, — 8,0,,/83 and D, = D, — §,D,,/3, equa-
tion (7.9) above may be rewritten in the form

sij + %Si].akk = —pSi]. + Si].()x* + %/J,*)Dii + zlu,*D,‘,J.
or (7.12)
S+ 1(trZ) = —pl+ I(A* + 34%)(tr D) + 2.*D’

Therefore in view of the relationship (7.10), equation (7.12) may be expressed by the pair
of equations

Si]. = ZM*D:] or S = ZM*D' (7.13)
o, = —3p+3«*D, or trZ = -3p+ 3*(trD) (7.14)

the first of which relates the shear effects in the fluid and the second gives the volumetric
relationship.
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7.3 BASIC EQUATIONS FOR NEWTONIAN FLUIDS.
NAVIER-STOKES-DUHEM EQUATIONS

In Eulerian form, the basic equations required to formulate the problem of motion for
a Newtonian fluid are

(a) the continuity equation (5.3),
prev,, =0 or p+p(Ve'v) =0 (7.15)

(b) the equations of motion (5.16),
o;;Fpb, = p0,  Or Vi Z+pb = p¥ (7.16)

t

(¢) the energy equation (5.32),

. 1 1 . 1 1_
U = ~o,D,—=c¢,,+2 or U = ZZ:D—-—-VY,-Cc+2 7.17
palj ij p i1 p PV + ( )

(d) the constitutive equations (7.9),

o = =P8, +A*8,D,, +2,*D, or I = —pl+A*ItrD) +2,*D (7.18)
(e) the kinetic equation of state (7.5),
p = pp,T) (7.19)

If thermal effects are considered, as they very often must be in fluids problems, the
addltlonal equations

(f) the Fourier law of heat conduction (6.71),
¢, = ~kT, or ¢ = -kvT (7.20)

1

(9) the caloric equation of state,
u = ’l,l,(p, T) (7.21)

are required. The system of equations (7.15) through (7.21) represents sixteen equations
in sixteen unknowns and is therefore determinate. :

If (7.18) above is substituted into (7.16) and the definition 2D, = (v, ;+v,,) is used, the
equations that result from the combination are the Navier-Stokes-Duhem equations of
motion, .

p?)i = Pbi — p’i + ()\* +/.L*)?)J.in + /J,*?)L”

or (7.22)
p\'f = pb— VD + A+ p¥V(V V) 4+ u¥ Vv

When the flow is incompressible (v,;=0), (7.22) reduce to the Navier-Stokes equations
for incompressible flow,

p?.)i = pb, — p,+ /.L*?)i’jj or pv = pb — VYD + u*Vv (7.23)

If Stokes condition is assumed (A* = —%u*), (?7.22) reduce to the Navier-Stokes equations
for compressible flow . .
pv; = pby =t duty,  tute

or (7.24)
pV = pb— VD + 3u*V(V V) + u*V2v



CHAP. 7] FLUIDS 163

The Navier-Stokes equations (7.23), together with the continuity equation (7.15) form
a complete set of four equations in four unknowns: the pressure p and the three velocity
components v,. In any given problem, the solutions of this set of equations must satisfy
boundary and initial conditions on traction and velocity components. For a viscous fluid,
the appropriate boundary conditions at a fixed surface require both the normal and
tangential components of velocity to vanish. This condition results from the experimentally
established fact that a fluid adheres to and obtains the velocity of the boundary. For an
inviscid fluid, only the normal velocity component is required to vanish on a fixed surface.

If the Navier-Stokes equations are put into dimensionless form, several ratios of the
normalizing parameters appear. One of the most significant and commonly used ratios is
the Reynolds number N ,, which expresses the ratio of inertia to viscous forces. Thus if
a flow is characterized by a certain length L, velocity V and density p, the Reynolds number
is '

N = VL/v (7.25)

(R)

where v = u*/p is called the kinematic viscosity. For very large Reynolds numbers, the
viscous contribution to the shear stress terms of the momentum equations may be neglected.
In turbulent flow, the apparent stresses act on the time mean flow in a manner similar to
the viscous stress effects in a laminar flow. If turbulence is not present, inertia effects
outweigh viscous effects and the fluid behaves as though it were inviscid. The ability of
a flow to support turbulent motions is related to the Reynolds number. It is only in the case
of laminar flow that the constitutive relations (7.18) apply to real fluids.

74 STEADY FLOW. HYDROSTATICS. IRROTATIONAL FLOW

The motion of a fluid is referred to as a steady flow if the velocity components are
independent of time. For this situation, the derivative ov,/d¢ is zero, and hence the material
derivative of the velocity

dvi _ . _ v dv . v

+vjvm. or ar = v = ET;

R—t— = vi = 6—t +V'va (7-26)

reduces to the simple form
v, = vw,, Or VvV = V*VgV (7.27)

A steady flow in which the velocity is zero everywhere, causes the Navier-Stokes equa-
tions (7.22) to reduce to
pb, = p, or pb = Vyp (7.28)
which describes the hydrostatic equilibrium situation. If the barotropic condition p = p(p)
is assumed, a pressure function

P(p) = "dp (7.29)
% P
may be defined. Furthermore, if the body force may be prescribed by a potential function
b, = -, or b=-VQ (7.30)
equations (7.28) take on the form
@+P), =0 or v@+P) =0 (7.81)

A flow in which the spin, or vorticity tensor (4.21),

- l/ov 0w = vV —
V., = 2<ax,- axi> or V = }vV-—Vv) (7.32)

ij
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vanishes everywhere is called an irrotational flow. The vorticity vector g, is related to
the vorticity tensor by the equation ,
0 = Vy; or q = V, (7.33)
and therefore also vanishes for irrotational flow. Furthermore,
¢ = Y%; O q = VXv ' (7.34)
and since V¥ Xv =0 is necessary and sufficient for a welocity potential ¢ to exist, the
velocity vector for irrotational flow may be expressed by

v, = —¢, O v = —V¢ (7.85)

75 PERFECT FLUIDS. BERNOULLI EQUATION. CIRCULATION

If the viscosity coefficients A* and u* are zero, the resulting fluid is called an inviscid
or perfect (frictionless) fluid and the Navier-Stokes-Duhem equations (7.22) reduce to
the form . -

pv; = pb,—p, or pv = pb— Vp (7.36)
which is known as the Euler equation of motion. For a barotropic fluid with conservative
body forces, (7.29) and (7.30) may be introduced so that (7.36) becomes

v, = —(@+P), or Vv = —V(@Q+P) (7.37)
For steady flow (7.37) may be written
vv,, = —(@+P), or v-yv = —-V(Q+P) (7.88)

If the Euler equation (7.37) is integrated along a streamline, the result is the well-
known Bernoulli equation in the form (see Problem 7.17)

o+ P+ o2+ f iz, = C(t (7.39)

For steady motion, dv,/0t = 0 and C(t) becomes the Bernoulli constant C which is, in general,
different along different streamlines. If the flow is irrotational as well, a single constant
C holds everywhere in the field of flow.

When the only body force present is gravity, the potential @ = gk where g is the
gravitational constant and % is the elevation above some reference level. Thus with & = P/g
defined as the pressure head, and v?/2g = h_ defined as the velocity head, Bernoulli’s equa-
tion requires the total head along any streamline to be constant. For incompressible fluids
(liquids), the equation takes the form

h+h +h, = h+plpg+ v*/29 = constant (7.40)

By definition, the velocity circulation around a closed path of fluid particles is given by
the line integral
o= §uds, o 1, = §veix (7.41)

From Stokes theorem (1.153) or (1.154), page 23, the line integral (7.41) may be converted
to the surface integral

o= f meu,d8 or 1 = f A-(vxvas (7.42)

where 1 is the unit normal to the surface S enclosed by the path. If the flow is irrotational,
vV Xv =0 and the circulation is zero. In this case the integrand of (7.41) is the perfect
differential d¢ = —v-dx with ¢ the velocity potential.
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The material derivative dr,/dt of the circulation may be determined by using (4.60)
which when applied to (7.41) gives
r, = f({)idxi-}-vidvi) or T, = f (vedx + v-dv) (7.43)

For a barotropic, inviscid fluid with conservative body forces the circulation may be shown
to be a constant. This is known as Kelvin’s theorem of constant circulation.

7.6 POTENTIAL FLOW. PLANE POTENTIAL FLOW

The term potential flow is often used to denote an irrotational flow since the condition
of irrotationality, ¥ X v =0, is necessary and sufficient for the existence of the velocity
potential ¢ of (7.35). For a compressible irrotational flow, the Euler equation and the
continuity equation may be linearized and combined as is done in acoustics to yield the
governing wave equation '

$ = ¢’y O $ = V% (7.44)

where ¢ is the velocity of sound in the fluid. For a steady irrotational flow of a compressible
barotropic fluid, the Euler equation and continuity equation may be combined to give

(¢8;,—vp)v,, = 0 or Vv —v:(v-Vv) = 0 (7.45)

st

which is the so-called gas dynamical equation.

For incompressible potential flow the continuity equation attains the form
¢y = 0 or V% =0 (7.46)

and solutions of this Laplace equation provide the velocity components through the defini-
tion (7.35). Boundary conditions on velocity must also be satisfied. On a fixed boundary,
for example, d¢/on = 0. An important feature of this formulation rests in the fact that
the Laplace equation is linear so that superposition of solutions is possible.

In a two-dimensional incompressible flow parallel to the x z, plane, v, =0, and the
continuity equation becomes
Voo = 0 or Vv = 0 (7.47)

where, as usual in this book, Greek subscripts have a range of two. By (7.47), regardless
of whether the flow is irrotational or not, it is possible to introduce the stream function
¢ = ¢(x,, x,) such that :

Vo = —e€p¥p (7.48)
If the plane flow is, indeed, irrotational so that
Vg = —¢a O V = —V¢ (7.49)

then from (7.48) and (7.49) the stream function and velocity potential are seen to satisfy
the Cauchy-Riemann conditions

¢,1 = '/’,2 and ¢_2 = _'/’,1 (7.50)
By eliminating ¢ and ¢ in turn from (7.50) it is easily shown that
$paa = 0 Oor V% =0 (7.51)

Yoo = 0 or Y% 0 (7.52)
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Thus both ¢ and y are harmonic functions when the flow is irrotational. Furthermore, the

complex potential .
() = oz, ) + wWr,,) (7.53)

is an analytic function of the complex variable, 2z = z, +ix, so that its derivative d¥/dz

defines the complex velocity .
d¥/dz = —v, + 1w, (7.54)

Solved Problems

FUNDAMENTALS OF FLUIDS. NEWTONIAN FLUIDS (Sec. 7.1-7.3)

7.1. Show that the deviator s, for the stress tensor o, of (7.3) is equal to ¢, the deviator
of T of (7.3).

From (7.3), o;; = —3p + 7; and so here

sij- = o5~ 5,:j0kk/3 = -pb‘” + Ti; 5”(_‘317 +Tkk)/3 = Ty Sij'rkk/3 = t,,:j

7.2. Determine the mean normal stress o,/3 for an incompressible Stokesian (nonlinear)
fluid for which »; = D, + 8D, D,, where « and B are constants.

From (7.3), o,y = —P&; + aDiJ- + BDikaj and so oy = —3p + aD;; + 8Dy D,;. But Dy =
Dy; and Dy =v;; =0 for an incompressible fluid so that
0;/8 = —p + BDyD;;/8 = —p — 2BI1,/3

where Il is the second invariant of the rate of deformation tensor.

7.3. Frictionless adiabatic, or isentropic flow of an ideal gas, is a barotropic flow for which
p = cp* where C and k are constants with k = ¢®/c®, the ratio of specific heat at
constant pressure to that at constant volume. Determine the temperature-density
and temperature-pressure relationships for such a flow.

Inserting p = Cpk into equation (7.6), the temperature-density relationship is o*—1/T = R/C,
a constant. Also, since p = (p/C)/k here, (7.6) yields the temperature-pressure relationship as
pk—D/k/T = R/C1/k, a constant.

7.4. Determine the constitutive equation for a Newtonian fluid with zero bulk viscosity,
i.e. with «* = 0.

If x* =0, \*=-—24*/3 by (7.11) and so (7.9) becomes o;; = —p&;; — (24*/3)8;; Dy, + 2u* D;;
which is expressed in terms of the rate of deformation deviator by

oy = —P8i; + 2u*(Dy;— 8;;Dpe/3) = —pdy; + 2u* Dy

If the deviator stress s; is introduced, this constitutive relation i{s given by the two equations
8; = 2u* Di'j and oy = —3p.
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7.5. Determine an expression for the “stress power” oD, of a Newtonian fluid having
equation (7.9) as its constitutive relation.

From (7.9) and the stress power definition,
o;Dy; = —p8;Dy; + N*8;;DiDy; + 2u*DyDy; = —pDy; + N*DyDy; + 2p*Dy;Dy;
In symbolic notation, this expression is written
2:D = —p(trD) + A*(trp)2 4+ 2u*D:D
In terms of Dj; the expression is
oDy = —pDy + MDDy + 2u¥(Dj; + 8yDyec/3)(Di; + 833D 0/8) = —pDy + x*DyDy; + 24*DiDy;

In symbolic notation,
2:D = —p(trbd) + x*(trb)2 + 24*D’: D’

7.6. Determine the conditions under which the mean normal pressure p,, = —0,/3 is
equal to the thermodynamic pressure p for a Newtonian fluid.

With the constitutive equations in the form (7.18) and (?.14), the latter equation gives
Pemy—P = —«*Dy. Thus Py =p when «* =0 (by (?.11) when A* = —2u*) or when D;=0.

7.7. Verify the Navier-Stokes-Duhem equations of motion (7.22) for a Newtonian fluid
and determine the form of the energy equation (7.17) for this fluid if the heat conduc-
tion follows the Fourier law (7.20).

Since D; = v;;, equation (7.18) may be written o;; = —p8;; + N*8y vy ) + u*(v;;+v;;). Thus
O = TP,8y H N8y + Wy T vsy) = oo+ (N ey ety
and with this expression inserted into (7.16) a direct verification of (7.22) is complete.
Substituting the above equation for ¢;; together with (7.20) into the energy equation (7.17), the

result is .
pu = [—paij + A*Sij'vk’k + :u*(vi,j + vj_i)](vi,,- + vj.,')/2 — kT’ﬁ + pz

which reduces to
pit = —pvy ;s N vy (g )+ 0;,0/2 — KT + oz

7.8. Determine the traction force T, acting on
the closed surface S which surrounds the
volume V of a Newtonian fluid for which
the bulk viscosity is zero.

The element of traction is dT; = t{™dS and
the total traction force is T; = f t{™ dS which

s
because of the stress principle is T; = f o, dS.
From Problem 7.4, this becomes S

S

for a zero bulk modulus fluid; and upon application
of Gauss’ theorem, A

o= f @ueDh;-pyav Fig. 71
A4




168

7.9.

7.10.
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In an axisymmetric flow along the x; axis the velocity is taken as a function of x; and
r where 7? = 22 + z2. If the velocity is expressed by v = g&: + vs€; where €, is
the unit radial vector, determine the form of the continuity equation.

Equation (5.4) gives the continuity equation in symbolic notation as dp/dt + V ¢« (ov) = 0.

d(pv
Here the cylindrical form of the operator V may be used to give V - (ov) = %a—(ngq) + %.
3

Inserting this into (5.4) and simplifying, the continuity equation becomes

7(8p/0t) + d(rpq)/dr + d(rpvy)/dxg; = 0

In a two-dimensional flow parallel to the .22 plane, vs and 4/dx; are zero. Determine
the Navier-Stokes equations for an incompressible fluid and the form of the con-
tinuity equation for this case.

From (7.23) with i =3, pb;=p; and when {=1,2, pVy = pby — P o + u*v,4,gs. The con-
tinuity equation (7.15) reduces to v4,4 = 0. ¢

If body forces were zero and v, = v,(x,, 25, t), vy =0, P = p(x,, ¥y, t) the necessary equations
would be pv, = —dp/dx, + p*(82v,/9> + 0%v,/0x3) and 9v,/dx; = 0.

HYDROSTATICS. STEADY AND IRROTATIONAL FLOW (Sec. 7.4)

7.11.

7.12.

7.13.

Assuming air is an ideal gas whose temperature varies linearly with altitude as
T = Ty — axs where T, is ground level temperature and x: measures height above
the earth, determine the air pressure in the atmosphere as a function of x; under
hydrostatic conditions.

From (7.6) in this case, p = pR(Ty — ax;); and from (7.28) with the body force b3 = —g, the
gravitational constant, dp/dxy = —pg = —pg/R(Ty— ax;). Separating variables and integrating
vields Inp = (9/Ra) In(Ty—axs) +InC where C is a constant of integration. Thus »p =
C(Ty— ax3)9/Re and if p =py when 3 =0, C=p Ty~ 9/Ra and so p = py(l — axs/Ty)9/Re,

A barotropic fluid having the equation of state p = Ap* where A and k are constants
is at rest in a gravity field in the x; direction. Determine the pressure in the fluid
with respect to ;3 and po, the pressure at z; = 0.

From (7.28), dp/dx3 = —pg, dp/dx, = dp/dx, = 0. Note that pressure in z, and =z, directions
is constant in the absence of body forces b, and b,. Since here p = (p/A\)/k, p—lkdp = —gA—Vkdg,
and integration gives (k/(k—1))pk—D/k = —g\—1/kg, + C. But p=p, when z3 =0 so that
C = (k/(k— 1))p(§k—1)/k. Therefore x5 = (kpy/(k — 1)gpe)(1 — (p/py)k—17/k)  where p, = (po/A)M/k,

A large container filled with an incompressible
liquid is accelerated at a constant rate a = a.es+
a;€;s in a gravity field which is parallel to the z3;
direction. Determine the slope of the free surface
of the liquid.

From (7.28), dp/dx, =0, dp/dz, = pa, and dp/dz;
—plg — a3). Integrating, » = pa,x,+ f(x;) and p
—p(g — ag)xs + h(x,) where f and k are arbitrary functions
of their arguments. In general, therefore, p = pa,x, —
olg — aj)xs +py, where py is the pressure at the origin of
coordinates on the free surface. Since p = p, everywhere
on the free surface, the equation of that surface is /23 =
(g _ 03)/(12. Fig. 7-2

ag

ag
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7.14. If a fluid motion is very slow so that higher order terms in the velocity are negligible,
a limiting case known as creeping flow results. For this case show that in a steady
incompressible flow with zero body forces the pressure is a harmonic function, i.e.

Vvp = 0.
For incompressible flow the Navier-Stokes equations (7.23) are
p(8vy/0t + v;v; ) = pb;— p,; + ptv,
and for creeping flow these linearize to the form
p(9vi/0t) = pb; — p; + u*v

Hence for steady flow with zero body forces, p ; = u*v; ;. Taking the divergence of this equation
yields p ; = p*v; ;;;5 and since the continuity equation for incompressible flow is v;; = 0, it follows
that here p, ; = V2p = 0.

7.15. Express the continuity equation and the Navier-Stokes-Duhem equations in terms of
the velocity potential ¢ for an irrotational motion.

By (7.85), v; = —¢,; so that from (7.15) the continuity equation becomes p—pV2p = 0. Also
with v; = —g¢ ;, (7.22) becomes

—pg,i = pby— B — (N Fa¥g g — w¥e,u
or —p(09,:/0t + ¢k p,u) = pbi — D2, — (\* +2p%)e 5
In symbolic notation this equation is written
—pV(99/0t + (V9)2/2) = pb — Vp — (\* + 2u*) V(V2¢)

7.16. Determine the pressure function P(p) for a barotropic fluid having the equation of
state p = Ap* where A and k are constants.

From the definition (7.29),

] P Ik P
P(p) = f o _ f (p/N) Ve dp = I{:Qi . I:p(k—l)/k] = k—il— <£ - @>
B, [ ?, Py o Po

Also since dp = Mepk—1dp, the same result may be obtained from

4 Ak P E [p Do
P = k—2 = k—1 = % [(p Do
@ = [ wer2dp k_l[p ]po k—1<,, p0>

Py

PERFECT FLUIDS. BERNOULLI EQUATION. CIRCULATION (Sec.7.5)
7.17. Derive equation (7.39) by integrating Euler’s equation (7.37) along a streamline.

Let dx; be an increment of displacement along a streamline. Taking the scalar product of this
increment with (7.37) and integrating gives

favidxi-i-fvjv”dxi-*- fa dx; + fP dz; = C(t)

Since @ ;dx; =dQ and P ;dx; = dP the last two terms integrate at once. Also, along a stream-
line, dx; = (v;/v) ds where ds is the increment of distance. Thus in the second integral,

vivg sde; = vv(v/v)ds = v (v/v)ds = v pdey = vpdy

Therefore f v;v;, 5 da; = fvi dv; = 3vv; = 402, and (2.39) is achieved.
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7.18. The barotropic fluid of Problem 7.16 flows from a large closed tank through a thin
smooth pipe. If the pressure in the tank is N times the atmospheric pressure, deter-
mine the speed of the emerging fluid.

Applying Bernoulli’s equation for steady flow between point A, at rest in fluid of the tank and
point B, in the emerging free stream, (7.39) assumes the form Q4 + P, + ?‘ll_vﬁ = Qg + Pg + %v%.
But v, = 0, and if gravity is assumed negligible this equation becomes (see Problem 7.16),

k Pa P 102 p) 2k s [Nog
ke _(PA_PBY - 2 o =2 Do sy
k"‘l(PA PB) 2B T B k"lpB<PA

Since pgp/ps = (pp/Py)~Vk = N~Vk the result may be written

2 _ 2k PB a1y
vp — =1 op (N 1)

7.19. Show that for a barotropic, inviscid fluid with conservative body forces the rate of
change of the circulation is zero (Kelvin’s theorem).

From (7.43) T, = § (v; dw; + v;dv;) and by (7.87), v; = —(Q+ P); for the case at hand. Thus

T, = § (—9,; dz; — P da; + vy dv) = — § (dQ + dP — d(v2/2)) = — § d(@+ P—v2/2) =0, the inte-

grand being a perfect differential.

7.20. Determine the circulation around the square x, = =1, +1*2
x2 = =1, 23 =0 (see Fig. 7-3) for the two-dimensional
flow v = (xl + xz)'él + (xf - xz)ez.

Using the symbolic form of (7.42) with i = & and R
VXv = (20,—1)8,, !
1 1
r, = f f @z, — 1) do, doy = —4 =4
-1 -1
The same result is obtained from (7.41) where '
Fig.7-3
T, = § vedx
1 —1 =1 1
= f (1-x2)dx2+f (%, +1) do; + f (1-x2)dx2+f (¢, —1)dx; = —4
-1 1 1 -1

with the integration proceeding counterclockwise from A.

POTENTIAL FLOW. PLANE POTENTIAL FLOW (Sec. 7.6)

7.21. Give the derivation of the gas dynamical equation (7.45) and express this equation in
terms of the velocity potential 4.

For a steady flow the continuity equation (5.4) becomes p ;v; + pv;; = 0 and the Euler equa-
tion (7.36) becomes pv;v; ; + p; = 0 if body forces are neglected. For a barotropic fluid, » = p(p)
and so dp = (9p/dx;)(dxz/dp)dp; or rearranging, p ; = (dp/dp)p,; = ¢% ; where ¢ is the local velocity
of sound. Inserting this into the Euler equation and multiplying by v; gives pv;v;v; ; + c2v;p,; = 0.
From the continuity equation c2v;p ; = —c2v;; = —c2§;;v;; and so (¢28;— v;v;v;,; = 0. In terms
of ¢ ; = —v; this becomes (¢28;;— ¢ ;9 ¢, = 0.

7.22. Show that the function ¢ = A(—22 — 22 +2z;) satisfies the Laplace equation and
determine the resulting velocity components.

Substituting ¢ into (7.46) gives —24 —2A+44 =0. From (7.35), v, =24z, vy = 2Ax,,

vy = —4Ax,. Also, by the analysis of Problem 4.7 the streamlines in the x, plane are represented

by xima = constant; in the z, plane by xfa;g = constant. Thus the flow is in along the x; axis
against the z,x, plane (fixed wall).
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7.23.

7.24.

7.25.

7.26.

Show that the stream function y(x,, x2) is constant along any streamline.

From (7.48) and the differential equation of a streamline, dux,/v, = dx,/v, (see Problem 4.7),
—day/y,, = dwy/y,, or y, ,dx;+y ,dxy, =dy =0. Thus y = a constant along any streamline.

Verify that ¢ = A(x? —23) is a valid velocity =,
potential and describe the flow field.

equipotential
lines

stream-
lines

For the given ¢, (7.46) is satisfied identically by
24 —2A =0; and from (7.49), v, = —24z,, v,=
+2Azx,. The streamlines are determined by integrat-
ing dz,/z; = —dzy/x, to give the rectangular
hyperbolas x;2, = C (Fig. 7-4). The equipotential
lines A(mf -—x%) = C, form an orthogonal set of
rectangular hyperbolas with the streamlines. Finally
from (7.50), ¢ = —2A4x,2, + Cy and is seen to be con-
stant along the streamlines as was asserted in Prob-
lem 7.23. Fig.7-4

A velocity potential is given by ¢ = Az, + Bx:i/r2 where 72 = 22 + z;. Determine

the stream function y for this flow.

From (7.50), y,; = —¢,, = 2Bx,x,/r* so that by integrating, y = —Bux,/r2+ f(x,) where f(x,)
is an arbitrary function of x, Differentiating, y , = -—B(x% —xi)/r‘*+f’(x2). But from (?.50),
Vo = ¢1 = A+ B(—2x> +23)/rt. Thus f'(x;) = A and f(x,) = Ax,+ C. Finally then y =
Axy— Bzy/r? + C.

Differentiate the complex potential &(z) = A/z to obtain the velocity components.

Here d®/dz = —A/22 = —A/(x; + ix,)2 which after some algebra becomes d&/dz =
—A(x? — x3)/r* + i2Azx,/rt. Thus

v = A(x‘:‘ — ad )t and vy = 2Az2,/1%
Note that since ® = A/z = A(x; — ix,)/r2, ¢ = Ax;/r? and ¢ = —Az,/r2. Also note that
vy = —¢,, = A(@?—x3)/rt  and vy = —¢ o, = 24z 3y/rt

MISCELLANEOUS PROBLEMS

7.27.

Derive the one-dimensional continuity equation for the flow of an inviscid incompres-
sible fluid through a stream tube.

Let V be the volume between arbitrary cross sec-
tions A and B of the stream tube shown in Fig. 7-5.
In integral form, for this volume (5.2) becomes

f V+vdV = 0 since p is constant here. Convert-
v

ing by Gauss’ theorem, f hev dS = 0 where n is
s
the outward unit normal to the surface S enclosing V.

Since B L v on the lateral surface, the integration re-

duces to Fig.7-5
A A
f n, vy dS + f ng*vgdS = 0
Sa Sp
The velocity is assumed uniform and perpendicular over S, and Sp; and since v = —vghp,

vAf dS~'va dS = 0 or v,S, = vgSp = a constant.
Sa Sp
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7.28.

7.29.

7.30.

7.31.

7.32.

7.33.

FLUIDS [CHAP. 7

The stress tensor at a given point for a Newtonian fluid with zero bulk viscosity is

-6 2 -1
o, = 2 -9 4 |. Determine ;.
-1 4 -3
From (7.14), for this fluid p = —o0;/3 = 6. Then from (7.3),
-6 2 -1 6 0 0 0 2 -1 )
T = oy +68;  or 2 -9 4| +|0 6 o] = 2 -3 4
-1 4 -3 0 0 6 -1 4 3

Show that ¢, and r,; of (7.3) have the same principal axes.

When written out, (7.3) becomes ‘¢;; = —p + 73, 099 = —p + 7oy, 033 = —p + 7133, 12 = Ty,
053 = Te3, 013 = 715. For principal directions x} of o, ofy = 053 = o}3 =0 and by the last three
equations of (7.3), of;=r}; =0 for i j. Thus x} are principal axes for r;; also.

A dissipation potential &, is often defined for a Newtonian fluid by the relationship
@, = («/2)D, D, + y*D/D;. Show that 8®,/0D, =r,,.

Here 0®p/D,, = (x/2)[Dy(dDy;/dD,,) + (9Dy/dD,)D;j| + 24[Dj(dD};/aD,,)]. But aD/oD,, =
8ip8iq = 8pq and D[ /dDp, = 8,,8;4 — 8;8,4/3 so that

3®p/0Dpq = «Diydpq + 2u*(Dyj — 84;Dsc/3)(81p83q — 8138pa/3) = #Dypq + 2u*(Dpg — 8paDii/3)

ip

Finally since & = A* + 24*/3,
a‘I’D/aqu = )‘*Squii + 2/1*qu = Tpq

Determine the pressure-density relationship for the ideal gas discussed in Problem 7.11.

At 23=0, p=py and p =p, The ideal gas law (7.6) is here p = pR(Ty— a%;) so that
po = poRTy; and from the pressure elevation relationship p = py(1 — ax3/T)9/Ra of Problem 7.11,
plpg = (T/Ty)8/Ra—1),  Thus writing p = py(1 — ax3/Ty)9/Re in the form p/py = (T/Ty)9/Re, it is
seen that T/T, = (p/p,) *R/9 and so p/py = (p/py) 1~ R/,

For a barotropic inviscid fluid with conservative body forces show that the material
derivative of the total vorticity, _‘if q.dV = f v.q.dS,.

dt Jy i g v j
d

dt
a, = —(Q+ P), from (7.87); and by the divergence theorem (1.157),

From (4.54) and the results of Problem 4.33, q;dV :‘f (e a5 + q;v;) dS;.  But here
S

f €@+ P),y dS; = f 6@+ P) g dV = 0
b \4

since the integrand is zero (product of a symmetric and antisymmetric tensor). Hence

d
EJ‘V qdV = quvidsj

For an incompressible Newtonian fluid moving inside a closed rigid container at rest,

show that the time rate of change of kinetic energy of the fluid is _“*f q2dV assum-
ing zero body forces. ¢ is the magnitude of the vorticity vector. v
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From Problem 5.27, the time rate of change of kinetic energy of a continuum is

(%{ = f pbyv; dV — f oy v;,;dV + f v;¢{™ dS
v v s

In this problem the first and third integrals are zero; and for a Newtonian fluid by (7.18),

dK
9 = f o;vy,;dV. = — f (=P8 + A*8; Dy + 2p*Dyy)v; ; dV
v v
But incompressibility means v;; = D; =0 and so
dK
o T f Dyv,,;dV = —p* f (vi,;+ v, AV
v v
= —u* f (fkjiqk)’"i,jdv = —p* f Qk(fkji’"i,j) v = —p* f @i dV
v v v

7.34. Show that for a perfect fluid with negligible body forces the rate of change of cir-
culation i‘c may be given by — f exl1/p) ;0 . dS,.
S

From (7.43), i‘c = § v, da; + § v; dv;; and since § d(4v?) = 0, the second integral is zero.

From (7.86) with b; =0, v; = —p,;/p and so now

i

T, ~§ (p,/p) day, = ~f e(?,1/p), ;1 dS
s
where (7.42) has been used in converting to the surface integral, Differentiating as indicated,

T, = *f axl(1/p), ;0 + Dile] dS; = *f ek(1/0),5 D5 dS;
S S

Supplementary Problems

7.35. The constitutive equation for an isotropic fluid is given by e;; = —p8;; + KyjpeDyq with Km,,; con-
stants independent of the coordinates. Show that the principal axes of stress and rate of deformation
coincide.

7.36. Show that (1/p)(dp/dt) = 0 is a condition for “"ii/3 = p for a Newtonian fluid.

7.37. Show that the constitutive relations for a Newtonian fluid with zero bulk viscosity may be expressed
by the pair of equations 8;; = 2u*D;; and —o; = 3p.

7.38. Show that in terms of the vorticity vector q the Navier-Stokes equations may be written
v = b— Vp/p — »*V X q where »* == g*/p is the kinematic viscosity. Show that for irrotational
motion this equation reduces to (7.36).

7.39. If a fluid moves radially with the velocity v = v(r,t) where 2 = x,x;, show that the equation of

inuity is 22 9 4 P 0 oy —
continuity is at+v6r+'r2 P (r2v) = 0.

7.40. A liquid rotates as a rigid body with constant angular velocity « about the vertical x4 axis. If
gravity is the only body force, show that p/p — &2r2/2 + gx; = constant.
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7.41,

742,

7.43.

7.4,

7.45.

7.46.

7.47.

7.48.
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For an ideal gas under isothermal conditions (constant temperature = T), show that p/py = p/py =
e~ (9/RToz) where p, and p, are the density and pressure at z; = 0.

Show that if body forces are conservative so that b; = —~@;, the Navier-Stokes-Duhem equations
for the irrotational motion of a barotropic fluid may be integrated to yield —p(d¢/dt+ (V$)2/2) +
o+ P+ (A*+ 2u%)V2¢ = f(t). (See Problem 7.15.)

Show that the velocity and vorticity for an inviscid flow having conservative body forces and
constant density satisfy the relation g¢; — q;v;,; = 0. For steady flow of the same fluid, show that
Yi%.; = 95%4,5-

For a barotropic fluid having p = p(p) and P(p) defined by (7.29), show that grad P = grad p/p.

Show that the Bernoulli equation (7.89) for steady motion of an ideal gas takes the form
(a) @ + p In (p/p) + v2/2 = constant, for isothermal flow, (b) @ + (k/k — 1)(p/p) + v2/2 = constant,
for isentropic flow.

Show that the velocity field v, = —2x,2yx3/7%, vy, = (mf - xg):c;,/r‘*, V3 = %p/r2 where 72 = xf +

xg + x§ is a possible flow for an incompressible fluid. Is the motion irrotational? Ans. Yes

If the velocity potential @(z) = ¢ + iy is an analytic function of the complex variable z = «; +
iy, = ret® show that in polar coordinates 9% 1oy and Log _ a—‘p.
or r 96 r 36 or

If body forces are zero, show that for irrotational potential flow y ; = »* = u*/p is the kinematic
viscosity.



Chapter 8

Plasticity

81 BASIC CONCEPTS AND DEFINITIONS

Elastic deformations, which were considered in Chapter 6, are characterized by com-
plete recovery to the undeformed configuration upon removal of the applied loads. Also,
elastic deformations depend solely upon the stress magnitude and not upon the straining
or loading history. Any deformational response of a continuum to applied loads, or to
environmental changes, that does not obey the constitutive laws of classical elasticity may
be spoken of as an inelastic deformation. In particular, irreversible deformations which
result from the mechanism of slip, or from dislocations at the atomic level, and which
thereby lead to permanent dimensional changes are known as plastic deformations. Such
deformations occur only at stress intensities above a certain threshold value known as the
elastic limit, or yield stress, which is denoted here by o,.

In the theory of plasticity, the primary concerns are with the mathematical formulation
of stress-strain relationships suitable for the phenomenological description of plastic defor-
mations, and with the establishment of appropriate yield criteria for predicting the onset
of plastic behavior. By contrast, the study of plastic deformation from the microscopic
point of view resides in the realm of solid state physics.

The phrase plastic flow is used extensively in plasticity to designate an on-going plastic
deformation. However, unlike a fluid flow, such a continuing plastic flow may be related
to the amount of deformation as well as the rate of deformation. Indeed, a solid in the
“plastic” state can sustain shear stresses even when at rest.

Many of the basic concepts of plas-

ticity may be introduced in an elementary o . B
way by consideration of the stress-strain |
diagram for a simple one-dimensional ten- |
sion (or compression) test of some hypo- |
thetical material as shown by Fig. 8-1. !
In this plot, o is the nominal stress (force/ :
original area), whereas the strain ¢ may oy|-— |
represent either the conventional (engi- |
neering) strain defined here by :

|

e = (L—Lo)/Lo (8.1)

where L is the current specimen length
and Lo the original length, or the natural
(logarithmic) strain defined by Fig. 8-1

e = In(L/Le) = In(l+e) = e— e¥2+ O(e?) (8.2)

For small strains, these two measures of strain are very nearly equal as seen by (8.2) and it
is often permissible to neglect the difference.

1
M'TJ
4
m?!
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The yield point P, corresponding to the yield stress o,, separates the stress-strain curve
of Fig. 8-1 into an elastic range and a plastic range. Unfortunately, the yield point is not
always well-defined. It is sometimes taken at the proportional limit, which lies at the
upper end of the linear portion of the curve. It may also be chosen as the point J, known as
Johnson’s apparent elastic limit, and defined as that point where the slope of the curve
attains 50% of its initial value. Various offset methods are also used to define the yield
point, one such being the stress value at 0.2 per cent permanent strain.

In the initial elastic range, which may be linear or nonlinear, an increase in load causes
the stress-strain-state-point to move upward along the curve, and a decrease in load, or
unloading causes the point to move downward along the same path. Thus a one-to-one
stress-strain relationship exists in the elastic range.

In the plastic range, however, unloading from a point such as B in Fig. 8-1 results in the
state point following the path BC which is essentially parallel with the linear elastic portion
of the curve. At C, where the stress reaches zero, the permanent plastic strain ¢ remains.
The recoverable elastic strain from B is labeled ¢ in Fig. 8-1. A reloading from C back to
B would follow very closely the path BC but with a rounding at B, and with a small
hysteresis loop resulting from the energy loss in the unloading-reloading cycle. Upon a
return to B a load increase is required to cause further deformation, a condition referred
to as work hardening, or strain hardening. It is clear therefore that in the plastic range
the stress depends upon the entire loading, or strain history of the material.

Although it is recognized that temperature will have a definite influence upon the plastic
behavior of a real material, it is customary in much of plasticity to assume isothermal con-
ditions and consider temperature as a parameter. Likewise, it is common practice in
traditional plasticity to neglect any effect that rate of loading would have upon the stress-
strain curve. Accordingly, plastic deformations are assumed to be time-independent and
separate from such phenomena as creep and relaxation.

8.2 IDEALIZED PLASTIC BEHAVIOR

Much of the three-dimensional theory for analyzing plastic behavior may be looked
upon as a generalization of certain idealizations of the one-dimensional stress-strain curve
of Fig. 8-1. The four most commonly used of these idealized stress-strain diagrams are
shown in Fig. 8-2 below, along with a simple mechanical model of each. In the models
the displacement of the mass depicts the plastic deformation, and the force F plays the role
of stress.

In Fig. 8-2(a), elastic response and work-hardening are missing entirely, whereas in
(b), elastic response prior to yield is included but work-hardening is not. In the absence
of work-hardening the plastic response is termed perfectly plastic. Representations (a) and
(b) are especially useful in studying contained plastic deformation, where large deformations
are prohibited. In Fig. 8-2(c), elastic response is omitted and the work-hardening is assumed
to be linear. This representation, as well as (a), has been used extensively in analyzing
uncontained plastic flow.

The stress-strain curves of Fig. 8-2 appear in the context of tension curves. The
compression curve for a previously unworked specimen (no history of plastic deformation)
is taken as the reflection with respect to the origin of the tension curve. However, if a
stress reversal (tension to compression, or vice versa) is carried out with a real material
that has been work-hardened, a definite lowering of the yield stress is observed in the
second type of loading. This phenomenon is known as the Bauschinger effect, and will be
neglected in this book.
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Fig. 8-2

8.3 YIELD CONDITIONS. TRESCA AND VON MISES CRITERIA

A yield condition is essentially a generalization to a three-dimensional state of stress of
the yield stress concept in one dimensional loading. Briefly, the yield condition is a
mathematical relationship among the stress components at a point that must be satisfied
for the onset of plastic behavior at the point. In general, the yield condition may be
expressed by the equation

floy) = Cy (8.3)
where C, is known as the yield constant, or as is sometimes done by the equation
filoy) = 0 (8.4)

in which f (o) is called the yield function.
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For an isotropic material the yield condition must be independent of direction and may
therefore be expressed as a function of the stress invariants, or alternatively, as a sym-
metric function of the principal stresses. Thus (8.3) may appear as

fz(“v"n' "m) = CY (8.5)

Furthermore, experiment indicates that yielding is unaffected by moderate hydrostatic stress
so that it is possible to present the yield condition as a function of the stress deviator
invariants in the form

fa(Ilgp, IIIs ) = O (8.6)

Of the numerous yield conditions which have been proposed, two are reasonably simple
mathematically and yet accurate enough to be highly useful for the initial yield of isotropic
materials. These are:

(1) Tresca yield condition (Maximum Shear Theory)

This condition asserts that yielding occurs when the maximum shear stress reaches
the prescribed value C,. Mathematically, the condition is expressed in its simplest form
when given in terms of principal stresses. Thus for o, > o, > o, the Tresca yield
condition is given from (2.54b) as

$(o;—oy) = C, (aconstant) (8.7)

To relate the yield constant C, to the yield stress in simple tension oy, the maximum
shear in simple tension at yielding is observed (by the Mohr’s circles of Fig. 8-3(a), for
example) to be o,/2. Therefore when referred to the yield stress in simple tension,

Tresca’s yield condition becomes

p = oy (8.8)

1~ %m

The yield point for a state of stress that is so-called pure shear may also be used as a
reference stress in establishing the yield constant C,. Thus if the pure shear yield
point value is k, the yield constant C, equals k¥ (again the Mohr’s circles clearly show
this result, as in Fig. 8-3(b), and the Tresca yield criterion is written in the form

o~ oy = 2k (8.9)

ag os

ay/2

o =0 o=k

on=og =0 o= oy oy o = —k oN

(a) Simple Tension (b) Pure Shear
Fig. 8-3

(2) von Mises yield condition (Distortion Energy Theory)

This condition asserts that yielding occurs when the second deviator stress invariant
attains a specified value. Mathematically, the von Mises yield condition states
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~IIs, = Cy (8.10)

which is usually written in terms of the principal stresses as '
(op— o )* + (og —opp)? + (o — o) = 6C, (8.11)
With reference to the yield stress in simple tension, it is easily shown that (8.11) becomes
(o — o) + (o —o)? + (o — o)) = 207 (8.12)

Also, with respect to the pure shear yield value k, von Mises condition (8.11) appears
in the form

(‘71 - ‘711)2 + (‘711 - ‘7111)2 + (‘7111 - ‘71)2 = 6k? (8.13)
There are several variations for presenting (8.12) and (8.13) when stress components
other than the principal stresses are employed.

84 STRESS SPACE. THE 1-PLANE. YIELD SURFACE

A stress space is established by using
stress magnitude as the measure of dis-
tance along the coordinate axes. In the
Haigh-Westergaard stress space of Fig.
8-4 the coordinate axes are associated
with the principal stresses. Every point
in this space corresponds to a state of
stress, and the position vector of any such
point P(o,,0,,,0,,) may be resolved into a
component OA along the line OZ, which
makes equal angles with the coordinate
axes, and a component OB in the plane
(known as the II-plane) which is perpendic-
ular to OZ and passes through the origin.
The component along OZ, for which o, =
oy = oy, represents hydrostatic stress, so
that the component in the II-plane repre-
sents the deviator portion of the stress
state. It is easily shown that the equation o1
of the 1I-plane is given by

ooto,to,;, =0 (8.14) ' Fig. 8-4

Ploy, o1y, o111)

cos—11/y/3

In stress space, the yield condition (8.5), f,(o}, o\, 0) = Cy, defines a surface, the
so-called yield surface. Since the yield conditions are independent of hydrostatic stress,
such yield surfaces are general cylinders having their generators parallel to OZ. Stress
points that lie inside the cylindrical yield surface represent elastic stress states, those
which lie on the yield surface represent incipient plastic stress states. The intersection of
the yield surface with the 1-plane is called the yield curve.

In a true view of the I1I-plane, looking along OZ toward the origin O, the principal stress
axes appear symmetrically placed 120° apart as shown in Fig. 8-5(a) below. The yield
curves for the Tresca and von Mises yield conditions appear in the II-plane as shown in
Fig. 8-5(b) and (c) below. In Fig. 8-5(b), these curves are drawn with reference to (8.7) and
(8.11), using the yield stress in simple tension as the basis. For this situation, the von Mises
circle of radius V/2/3 o, is seen to circumscribe the regular Tresca hexagon. In Fig. 8-5(c),
the two yield curves are based upon the yield stress k in pure shear. Here the von Mises
circle is inscribed in the Tresca hexagon.
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o111

radius = k2

(41 o11

(@) ® (0
Fig. 8-5

The location in the II-plane of the projection of an arbitrary stress point P(e}, oy, oy;)
is straightforward since each of the stress space axes makes cos~11/2/3 with the II-plane.
Thus the projected deviatoric components are (\/2/3 ¢y, V2/3 0y, V2/30,,). The inverse

problem of determining the stress components for an arbitrary point in the II-plane is not
unique since the hydrostatic stress component may have any value.

85 POST-YIELD BEHAVIOR. ISOTROPIC AND KINEMATIC HARDENING

Continued loading after initial yield is reached leads to plastic deformation which may
be accompanied by changes in the yield surface. For an assumed perfectly plastic material
the yield surface does not change during plastic deformation and the initial yield condition
remains valid. This corresponds to the one-dimensional perfectly plastic case depicted by
Fig. 8-2(a). For a strain hardening material, however, plastic deformation is generally
accompanied by changes in the yield surface. To account for such changes it is necessary
that the yield function f,(s,) of (8.4) be generalized to define subsequent yield surfaces
beyond the initial one. A generalization is effected by introduction of the loading function

ff‘(oﬂ., &, K) =0 (8.15)

which depends not only upon the stresses, but also upon the plastic strains f and the work-
hardening characteristics represented by the parameter XK. Equation (8.15) defines a loading
surface in the sense that fF=0 is the yield surface, f¥<0 is a surface in the (elastic)
region inside the yield surface and f* > 0, being outside the yield surface, has no meaning.

Differentiating (8.15) by the chain rule of calculus,
of; off 1p 4 o1

1
—do.. +
3o, 9 T 8k " T 9K

-df ¥ dK (8.16)
Thus with f; =0 and (3f]/d0,)do, <0, unloading is said to occur; with ff =0 and
(8f {/00,) do; = 0, neutral loadmg occurs; and with f}=0 and (3f]/ds;)do, >0, loading
occurs. The manner in which the plastic strains ¢f enter into the functlon (8.15) when
loading occurs is defined by the hardening rules, two especially simple cases of which are
described in what follows.

The assumption of isotropic hardening under loading conditions postulates that the yield
surface simply increases in size and maintains its original shape. Thus in the II-plane the
yield curves for von Mises and Tresca conditions are the concentric circles and regular
hexagons shown in Fig. 8-6 below.
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Original yield curves

(a) Mises Circles (b) Tresca Hexagons

Fig. 8-6 .

In kinematic hardening, the initial yield surface is translated to a new location in stress

space without change in size or shape. Thus (8.4) defining an initial yield surface is
replaced by

filoy—ey) = 0 (8.17)
where the «;; are coordinates of the center of the new
yield surface. If linear hardening is assumed, P
&; = cf (8.18) v

where ¢ is a constant. In a one-dimensional case,
the Tresca yield curve would be translated as shown
in Fig. 8-7. Fig.8-7

8.6 PLASTIC STRESS-STRAIN EQUATIONS. PLASTIC POTENTIAL THEORY

Once plastic deformation is initiated, the constitutive equations of elasticity are no
longer valid. Because plastic strains depend upon the entire loading history of the material,
plastic stress-strain relations very often are given in terms of strain increments — the
so-called incremental theories. By neglecting the elastic portion and by assuming that the
principal axes of strain increment coincide with the principal stress axes, the Levy-Mises
equations relate the total strain increments to the deviatoric stress components through
the equations :

de; = 8,dr (8.19)

LY

Here the proportionality factor dx appears in differential form to emphasize that incre-
mental strains are being related to finite stress components. The factor di» may change
during loading and is therefore a scalar multiplier and not a fixed constant. Equations
(8.19) represent the flow rule for a rigid-perfectly plastic material.

If the strain increment is split into elastic and plastic portions according to
de,; = def + def (8.20)

and the plastic strain increments related to the stress deviator components by
def, = s,;dx (8.21)

the resulting equations are known as the Prandtl-Reuss equations. Equations (8.21) rep-
resent the flow rule for an elastic-perfectly plastic material. They provide a relationship
between the plastic strain increments and the current stress deviators but do not specify
the strain increment magnitudes.




182 PLASTICITY [CHAP. 8

The name plastic potential function is given to that function of the stress components
9(o;;) for which

09
P = —
ad = G- dr (8.22)

For a so-called stable plastic material such a function exists and is identical to the yield
function. Moreover when the yield function f (o) =1z, (8.22) produces the Prandtl-
Reuss equations (8.21).

87 EQUIVALENT STRESS. EQUIVALENT PLASTIC STRAIN INCREMENT

With regard to the mathematical formulation of strain hardening rules, it is useful
to define the equivalent or effective stress oy, as

1
GEQ = 0= [(011 - 022)2 + (022 - 033)2 + (0'33 - 011)2] + 6(‘7?2 + 033 + 0'321)}1/2 (823)

2
This expression ma{r_ be written in compact form as
o = V35,8,/2 = /31y (8.24)
In a similar fashion, the equivalent or effective plastic strain increment def, is defined by
defy = {B[(def, — de,)* + (def, — defy)” + (defy — def, )]
+ 4[(del,)* + (def,)” + (def, )"} ‘ (8.25)

which may be written compactly in the form

dcga = V% dcg dcs (8.26)

In terms of the equivalent stress and strain increments defined by (8.24) and (8.25)
respectively, dA of (8.21) becomes
3 dcé’a

2 oyq

daxr

(8.27)

88 PLASTIC WORK. STRAIN-HARDENING HYPOTHESES

The rate at which the stresses do work, or the stress power as it is called, has been given
in (5.32) as oD, per unit volume. From (4.25), de, =D, dt, so that the work increment
per unit volume may be written

dW = o, de; (8.28)

and using (8.20) this may be split into
dW = o, (def +def) = dWE + dWP (8.29)
For a plastically incompressible material, the plastic work increment becomes
dWwre = T dcz = Si].dcg (8.30)

Furthermore, if the same material obeys the Prandtl-Reuss equations (8.21), the plastic work
increment may be expressed as

dWF = oy deb, (8.81)
and (8.21) rewritten in the form
3 dW?P
dcg = Q*O_T'Sij (832)

EQ e
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There are two widely considered hypotheses proposed for computing the current yield
stress under isotropic strain hardening plastic flow. One, known as the work-hardening
hypothesis, assumes that the current yield surface depends only upon the total plastic work
done. Thus with the total plastic work given as the integral

wr = o d (8.59)
the yield criterion may be expressed symbolically by the equation
filoy) = F(WP) - (8.34)

for which the precise functional form must be determined experimentally. A second harden-
ing hypothesis, known as the strain-hardening hypothests, assumes that the hardening is a
function of the amount of plastic strain. In terms of the total equivalent strain ’

e = fdcgq (8.35)
this hardening rule is expressed symbolically by the equation ‘
filoy) = H(Eo) (8.36)

for which the functional form is determined from a uniaxial stress-strain test of the
material. For the Mises yield criterion, the hardening rules (8.34) and (8.36) may be shown
to be equivalent.

89 TOTAL DEFORMATION THEORY

In contrast to the incremental theory of plastic strain as embodied in the stress-strain
increment equations (8.19) and (8.21), the so-called total deformation theory of Hencky
relates stress and total strain. The equations take the form

¢, = (6+16)s, (8.97)
€ = (1 - 2v)o-ii/E (8.38)

In terms of equivalent stress and strain, the parameter ¢ may be expressed as
3 ‘ga .
' 5 — 8.39
6= g (8.99)

where here £, = V2e¢/3 so that
' X

ci‘; = 5;_; i (8.40)

810 ELASTOPLASTIC PROBLEMS

Situations in which both elastic and plastic strains of approximately the same order
exist in a body under load are usually referred to as elasto-plastic problems. A number of
well-known examples of such problems occur in beam theory, torsion of shafts and thick-
walled tubes and spheres subjected to pressure. In general, the governing equations for
the elastic region, the plastic region and the elastic-plastic interface are these:

(@) Elastic region
1. Equilibrium equations (2.23), page 49
2. Stress-strain relations (6.23) or (6.24), page 143
- 3. Boundary conditions on stress or displacement
4. Compatibility conditions '
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(b) Plastic region
1. Equilibrium equations (2.23), page 49
2. Stress-strain increment relations (8.21)
3. Yield condition (8.8) or (8.11)
4. Boundary conditions on plastic boundary when such exists

(c) Elastic-plastic interface
1. Continuity conditions on stress and displacement

811 ELEMENTARY SLIP LINE THEORY FOR PLANE PLASTIC STRAIN

In unrestricted plastic flow such as occurs in metal-forming processes, it is often pos-
sible to neglect elastic strains and consider the material to be rigid-perfectly plastic. If
the flow may be further assumed to be a case of plane strain, the resulting velocity field
may be studied using slip line theory.

'Taking the x122 plane as the plane of flow, the stress tensor is given in the form

oy, 0 O
o; = 0, Oy O (8.41)
0 0 o

and since elastic strains are neglected, the plastic strain-rate tensor applicable to the

situation is
0

E.i]' e.12 é22 O (8 '4’2)
0 0 0

. .
11 12

In (8.41) and (8.42) the variables are functions of z, and z: only, and also
& = 3v,;+0,) (8.43)
where v, are the velocity components.

For the assumed plane strain condition, de, = 0; and so from the Prandtl-Reuss equa-

tions (8.21), the stress o, is given by
0y = %(oy, T 0y,) (8.44)

Adopting the standard slip-line notation oy, =—p, and V/(o,, —0y)%/4 + (0,)® = k, the
principal stress values of (8.41) are found to be

w =Ptk

Oy = —D (8.45)

(o3

The principal stress directions are given e
with respect to the xx, axes as shown in B 7
Fig. 8-8, where tan 20 = 20,,/(o,, — 0,,).

As was shown in Section 2.11, the maxi- 92) /4
mum shear directions are at 45° with respect o a
to the principal stress directions. In Fig. p
8-8, the maximum shear directions are des- xy
ignated as the « and B directions. From the Fig. 8-8
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geometry of this diagram, § = =/4 + ¢ so that
1
. tan29

and for a given stress field in a plastic flow, two families of curves along the directions of
maximum shear at every point may be established. These curves are called shear lines, or
slip lines.

tan2¢ = (8.46)

For a small curvilinear element bounded by the two pairs of slip lines shown in Fig. 8-9,
o, = —p — ksin2¢
0,, = —P + ksin2¢ (8.47)
o, = kcos2¢
and from the equilibrium equations it may be shown that
p +2k¢ = C, aconstant along an « line

1
p—2k¢ = C

2

. (8.48)
a constant along a B line

Tg

Fig.8-9 Fig. 8-10

With respect to the velocity components, Fig. 8-10 shows that relative to the « and

8 lines, .
v, = U, C08¢ — Vg, sing

(8.49)
v, = v, 8in¢ + vz COSP

For an isotropic material, the principal axes of stress and plastic strain-rate coincide.
Therefore if 2, and z, are slip-line directions, ¢, and ¢,, are zero along the slip-lines so that

d . _
{a_xl (v, cos ¢ — v, sin ¢)}¢=0 = 0 (8.50)
{i (v 8in B + v, cos ¢)} = 0 (8.51)
o0xs =0
These equations lead to the relationships
dv, —v,d¢ = 0 onalines (8.52)
dv,+v,d$ = 0 on}flines (8.53)

Finally, for statically determinate problems, the slip line field may be found from (8.48),
and using this slip line field, the velocity field may be determined from (8.52) and (8.53).
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Solved Problems

BASIC CONCEPTS. YIELD PHENOMENA (Sec. 8.1-8.4)

8.1. Making use of the definitions (8.1) and (8.2), derive the relationship between natural
and engineering strain. How are the strain increments of these quantities related?

From (8.1), L/Ly=¢+1 and so (8.2) becomes e¢=1In(e+ 1). Differentiating this equation,
de/de = 1/(e + 1) = Ly/L since dL = Lde = Lde. -

82. Under a load P in a one-dimensional test the true stress is o = P/A  while the
engineering stress is S = P/A;, where A, is the original area and A is the current
area. For a constant volume plastic deformation (A¢Lo, = AL), determine the con-
dition for maximum load.

Here S = P/A,= (P/A)A/Ay) = o(Ly/L) = o/(1+¢€), and on an S-¢ plot the maximum load
occurs where the slope dS/de — 0. Differentiation gives dS/de = (do/de— ¢)/(1 +€)2 and this is
zero when do/de = ¢. From Problem 8.1, this condition may be expressed by do/de = o/(1+e).

8.3. As a measure of the influence of the intermediate principal stress in yielding the Lode
parameter, p = (20, —o;— oy )/(0;—oyy) is often used. Show that in terms of the
principal stress deviators this becomes = 3s, /(s;—s,).

From (2.71), oy = s;+ oy, etc., with oy = 0;/3. Thus
p = [2sy+oy) = (st oy) — (syp +oa)l/[(s1+ op) — (511 + onr)]
= [3syy — 5y + 8y + Sy (51— 81r1)

But s;+sy sy = Iy =0 andso x = 3sy/(sp— spp)-

84. For the state of stress o,, =0, 0y, =0;, =0, 0, =7, 0,; = 0,;, =0 produced in a ten-
sion-torsion test of a thin-walled tube, derive the yield curves in the ¢-r plane for the

Tresca and von Mises conditions if the yield stress in simple tension is o.

For the given state of stress the principal stress values aré o = (¢ + V472 +02)/2, o =0,
o1 = (6 — V472 +02)/2 as shown by the Mohr’s diagram in Fig. 8-11. Thus from (8.8) the Tresca
yield curve is V472 + 02 = oy, or o2+ 472 = 0%, an ellipse in the o-r plane. Likewise from (8.12)
the Mises yield curve is the ellipse o2 + 372 = o%. The Tresca and Mises yield ellipses for this
case are compared in the plot shown in Fig. 8-12,

Mises

Tresca

/oy

o111 o911

1.0
a/ay

Fig. 8-11 Fig. 8-12
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8.5.

8.6.

8.7.

8.8.

Convert the von Mises yield condition (8.10) to its principal stress form as given in
(8.11).

From (2.72), —lIly = —(s;8y; + 18 +8yy8p); and by (2.71), sy = oy — oy, etc., where
oy = (o7 + oy +o711)/3. Hence

——II:D = —(o1oq; + ooy +opoy) + (op + oy + 0111 )2/3
_ 2 2 2 _ _ -
= 2(of +of + 0§ — oo — ooy — oy 01)/6

Thus (o1 —o01)? + (o —opp)? + (o —oy)2 = 6Cy

With the rectangular coordinate system OXYZ oriented so that the XY plane coincides
with the II-plane and the o, axis lies in the YOZ plane (see Fig. 8-13 and 8-4), show
that the Mises yield surface intersects the I1-plane in the Mises circle of Fig. 8-5(b).

oy o o
-1/V2 12 0

Y —1/V6 —1/6 2/V6
z 113 11V/3 13

Fig. 8-13

The table of transformation coefficients between the two sets of axes is readily determined to
be as shown above. Therefore -

or = —XN2—YN6+2Z/IV3, oy = XIN2—-YN6+2ZN3E, om =.2YN6+ZN3

and (8.12) becomes
(—-V2X)2 + (X2 —83YV6)2 + (X2 +3YVE )2 = 26}

which simplifies to the Mises yield circle 3X2 4- 3Y2 = 20% of Fig. 8-5(b).

Using the transformation equations of Problem 8.6, show that (8.14), o, + oy + 0y = 0,
is the equation of the II-plane.

Substituting into (8.14) the o¢’s of Problem 8.6, o1 + oy + oy = V3Z =0, or Z=10 which
is the XY plane (1I-plane).

For a biaxial state of stress with o,=0, or/oy

determine the yield loci for the Mises and A5 (o

Tresca conditions and compare them by a

plot in the two-dimensional o,/o, vs. oy, /oy

space. ' —Lf B
From (8.12) with o;; = 0, the Mises yield condi-

tion becomes

[

GI/UY

2 2
o1 —owm o = oy F A

which is the ellipse
(o1/oy)? — (010111/012!) + (emfey)? = 1 Fig. 8-14
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with axes at 45° in the plot. Likewise, from (8.8) and the companion equations oy — op = oy,
oy — oy = oy, the Tresca yield condition results in the line segments AB and ED with equations
(or/oy) — (oyi/oy) = *1, DC and FA with equations oy/oy = =1, and BC and EF with equations
oi/ay = F1, respectively.

The von Mises yield condition is referred to in Section 8.3 as the Distortion Energy

Theory. Show that if the distortion energy per unit volume %, is set equal to the

yield constant C, the result is the Mises criterion as given by (8.12).
From Problem 6.26, u{y, is given in terms of the principal stresses by
ulpy = [(07— 03)% + (02— 03)? + (03— 07)?]/12G

and for a uniaxial yield situation where ¢; = oy, oy; = oy = 0, u(py = 02/6G. Thus Cy = ¢%/6G
and, as before, the Mises yield condition is expressed by (8.12).

PLASTIC DEFORMATION. STRAIN-HARDENING (Sec. 8.4-8.8)

8.10.

8.11.

8.12,

8.13.

Show that the Prandtl-Reuss equations (8.21) imply that principal axes of plastic
strain increments coincide with principal stress axes and express the equations in
terms of the principal stresses.

From the form of (8.21), when referred to a coordinate system in which the shear stresses are
zero, the plastic shear strain increments are seen to be zero also. In the principal axes system,
(8.21) becomes de! /sy = deby/sy = demp/syp = di. Thus de; = (o; —on)dA, deiy = (o1 — op) dA, ete.,
and by subtracting,

def — defl . defl — defu d‘fll — def - a
o1 — o511 o —9m  om = o1

For the case of plastic plane strain with ¢, =0, de¢,;, = 0 and o,, = 0, show that the
Levy-Mises equations (8.19) lead to the conclusion that the Tresca and Mises yield
conditions (when related to pure shear yield stress k) are identical.

Here (8.19) becomes de;; = (201; — 033) dA/3, deyyg = —(01; + 033) dA/3, 0 = 2033 — 0y;. Thus in the
absence of shear stresses, o; = a4y, o = 033 = 011/2, oy = 0 = 095. Then from (8.9) the Tresca
yield condition is ey — oy = o01; = 2k. Also, from (8.13) for this case, Mises condition becomes
(011/2)2 + (—011/2)2 + (—011)2 = 6k2 or of, = 4k2 and oy = 2k.

Show that the Prandtl-Reuss equations imply equality of the Lode variable p (see
Problem 8.3) and v = (2def; — def — defy)/(de? — defy;).

From equations (8.21),

v (2811 — 81— stur ) AN/ (8p — sprp) dA

= (2(oy —om) — (oy—op) — (o1 — o))/ ((oy — op) — (o111 — om))

(2o — oy — o)/ (o1 — o) =

Writing IIz, = s,s,/2, show that ollz /9o, = s,,.

1 1]
Here 9lls /d0,q = (95;/90,q)s;; Where 05;;/00,4 = 0(ai; — 8;j0/3)/00,q = 8;,8jq— 8;38,4/3. Thus
6II:D/60pq == (8,-p8jq - 8i]'8pq/3)si]' = 8pq since 8; — IzD = 0.
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8.14.

8.15.

8.16.

8.17.

8.18.

Show that when the plastic potential function 9(o;) = IIz,, the plastic potential equa-
tions (8.22) become the Prandtl-Reuss equations.

The proof follows directly from the result of Problem 8.13, since dg/do;; = s;; in this case and
(8.22) reduce to (8.21).

Expand (8.24) to show that the equivalent stress o,, may be written in the form
of (8.23).

From equation (8.24),
0%q = 385;84/2 = 3(0— 8y0,,/3) 03— 8;j044/3)/2 = (30,04 — 050;)/2
Expanding this gives
[8(e3; + o2, +02,) + 6(c%, + og‘a + a2,) — (011 + 099+ 035)?]/2
= [2(e%, + 02, T 02, — 01109 — 092033 — 033017) + 6(03, + 02, +02)]/2

= [(011 — 022)% + (022 — 033)2 + (033 — 011)% + 6(0%2 +0§3 +02,)]/2

which confirms (8.23).

In plastic potential theory the plastic strain increment vector is normal to the loading
(vield) surface at a regular point. If [N,N,, N ] are direction numbers of the normal
to the yield surface f,(o;), show that def/s; = def;/s;; = defy; /s, under the Mises yield
condition and flow law.

The condition of normality is expressed by N = grad f; which requires N,/(9f;/9e;) =
N,/(8f1/0e;;) = N3/(8f1/d0y;;) for the Mises case where fi = (07— op)? + (o — o) + (o1 —0p)% —
20% = 0. Here 08f;/d0; = 2(20y — oy — oy;) = 65}, ete., and since the plastic strain increment vector
is along the normal it follows that del /s; = defy/syy = defy/Syp -

Determine the plastic strain increment ratios for (a) simple tension with o, = oy,

(b) biaxial stress with oy = —O'Y/\/?:, Ogg = O'Y/'\/?:, Og3 — 0y = O,

=o0,, =0, (c¢) pure
shear with o, = 0,/V/3.

23
(a) Here o1y =0y =0y, oy =‘01H =0 and s; = 20y/3, sy = Sy = —oy/3. Thus from Problem
8.16, deP/2 = —deP /1 = —deF, /1.

(b) Here o7 =oy/V3, o3 =0, oy = —oy/V3 and s;=oy/V3, sy=0, sy = —oy/V3. Thus

def /1= —defu/l and the third term is omitted since it is usually understood in the theory that

if the denominator is zero the numerator will be zero too.

(c) Here oy =oy/V3, oy =0, o = —oy/V3 and again deP/1 = —de /1.

Determine the plastic work increment dW? and the equivalent plastic strain incre-
ment def for the biaxial stress state o, = —0,/V3, o), =0,/V3, o y=0,=0
o, = 0 if plastic deformation is controlled so that def = C, a constant.

23

In principal-axis form, (8.30) becomes dWP = o def + opg defI + o defu; and for the stress

state given, Problem 8.17 shows that def = —defu,

dWP = —ayC/V3 + (ay/V/3)(—C) = —2Coy/V3

del. = 0; hence

From (8.25),

dega = {2[(def - defl)2 + (def - defn )2 + (deP

I mr d‘f)z]}1/2/3

{2[C2+ C2 +4C2|31/2/3 = 2C/V/3
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8.19. Verify (8.32) by showing that for a Prandtl-Reuss material the plastic work increment
is dWP = o, odeE, as given in (8.31).

From (8.30), dWP = s;;5;;d\ for a Prandtl-Reuss material satlsfymg (8.21). But from (8.27),

d\ = 3dehq/20pq for such a material and so dWP = (8s48:j/2)(debq/opq) Which because of the

definition (8.24) gives dWP = ¢pq deEQ Thus deEQ = dWP/ozq here and (8.32) follows directly
from (8.21).

8.20. For a material obeying the Mises yield condition, the equivalent stress o,, may be
taken as the yield function in the hardening rules (8.34) and (8.36). Show that in thig
case oy f” = H’ where F” and H’ are the derivatives of the hardening functions with
respect to their respective arguments.

Here (8.34) becomes ozq = F(WP) and so dogq = F'dWP. Likewise (8.36) is given here(by
opq = H(ega) and so doggq = H' dega. Thus F'dWP =H' degg; and since from (8.31) (or Problem
8.19) dWP = ogqdehg, it follows at once that opoF’ = H

TOTAL DEFORMATION THEORY (Sec. 8.9)
8.21. The Hencky total deformation theory may be represented through the equations

€& = ef;: +e§ with 65 = CE + Suefk/'g = (3 /2)G+ 8”(1 2 )okk/SE and e = ¢8;.
Show that these equations are equivalent to (8.37) and (8.38).
The equation e“ = ¢s;; implies ¢; = 0 so that eg = eu = ¢s11, and from ¢; =¢; + eu it fol-

lows that here e]] = ef; From the same equation, e;; + §;;¢,/3 = eu + 8ien/3 + eP whlch reduces
to ey = el + e = (¢ +34@sy;, (8.37). Also from ¢ =ef, e = (1— 2o /E, (8 38).

822, Verify that the Hencky parameter ¢ may be expressed as given in (8.39).

Squaring and adding the components in the equation e = ¢8;; of Problem 8.21 gives € €5
28,8, or ¢ = \’35“ ij/2 /ogq which when multiplied on each side by 2/3 becomes

¢ = 3’\’26,”6“/3/26131 = 3EEQ/2‘7EQ

ELASTOPLASTIC PROBLEMS (Sec. 8.10)

8.23. An elastic-perfectly plastic rectangular beam is loaded steadily in pure bending.
Using simple beam theory, determine the end moments M for which the remaining
elastic core extends from —a to a as shown in Fig. 8-15.

a o |

M M ¢
t “
A —> xaé 11
[
4

2 % ‘ Zg

P_P —
J

Fig. 8-15

Here the only nonzero stress is the bending stress ¢;;. In the elastic portion of the beam
(—a < zy<a), o;; = Ee;y = Exy/R where R is the radius of curvature and E is Young’s modulus.
In the plastic portion, ¢,; = oy. Thus

a C
M = 2 f %(mz)% dzy + 2f wooybdz, = bay(c? — a2/3)
0

where oy = Ea/R, the stress condltlon at the elastic-plastic interface, has been used. From the
result obtained, M = 2bc20y/3 at first yield (when a =¢), and M = bec2oy for the fully-plastic
beam (when a = 0).
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8.24.

8.25.

8.26.

SLIP
8.27.

Determine the moment for a beam loaded as in Problem 8.23 if the material is a
piecewise linear hardening material for which o,, = oy + A(¢,, — o, /E) after yield.

The stress distribution for this beam is shown in Fig. 8-16.
Again e;; = z,/R and so

* E(2)% ¢ %y oy
M = ZJ; 1; dm2+2j; [ay+A<—R~2-—E>:| xzbdgz

2Eba3 oy AN L, A(cd — ad)
3R +2b{—2—<1 E)(c a)+———3R .
or using oy = Ea/R as in Problem 8.23, 1433
M = c®boy(l— A/E) + 2c3bA/3R + boSR¥A/E — 1)/3E2 Fig. 8-16

An elastic-perfectly plastic circular shaft of radius
¢ is twisted by end torques T as shown in Fig. 8-17.
Determine the torque for which an inner elastic core
of radius ¢ remains.

The shear stress oy, is given here by o, = kr/a for
=r=aqa, and by o=k for a=r=c¢ where k is the
yield stress of the material in shear. Thus

a ¢ 27k
T = 27 f (kr3/a) dr + 2« f kr2dr = —3-(c3— a3/4)
0 a

Therefore the torque at first yield is T; = zkc3/2 when a = ¢;
and for the fully plastic condition, T, = 2xkc3/3 = 4T,/3
when a = 0. _ Fig. 8-17

A thick spherical shell of the dimensions shown in
Fig. 8-18 is subjected to an increasing pressure po.
Using the Mises yield condition, determine the pres-
sure at which first yield occurs.

Because of symmetry of loading the principal stresses
are the spherical components o(ge) = oy = 011, I(ppy = 0111~
Thus the Mises yield condition (8.12) becomes g9y — 0(ppy = ay.
The elastic stress components may be shown to be

Oy = —Po(b3/r8—1)/(b3/a?— 1)
Tey = o) = Po(b3/2r3 +1)/(b3/ad — 1)

Therefore oy = 3b3py/273(b3/a3 — 1) and py = 20y(1 — a3/3)/3
at first yield which occurs at the inner radius a. Fig. 8-18

LINE THEORY (Sec. 8.11)
Verify directly the principal stress values (8.45) for the stress tensor (8.41) with
043 = (0, T 0,,)/2 as given in (8.44).
The principal stress values are found from the determinant equation (2.87) which here becomes
dll - g (712
a9 g0 0 = 0
0 0 —p—o
Expanding by the third column,
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(=p — 0)[(o1; — 0)(ogp — o) — “?2] = (—p—0)[o® — (01, T ag)o — 0?2] =0

The roots of this equation are clearly ¢ = —p and o = (o4 top9) = \/al“("ll +ag)?2 +ad, = —p k.

8.28. Using the condition that the yield stress in shear k is constant, combine (8.47) with
the equilibrium equations and integrate to prove (8.48).

From the equilibrium equations doy1/02; + d019/3%s = 0 and 8o,y/0%; + doy9/0x, = 0 which
are valid here, (8.47) yields

—ap/dx; — k(2 cos 2¢)(dp/d%,) + k(—2 sin 2¢)(d¢/02,) = 0
and —k(2 sin 2¢)(dp/dzx,) — dp/dxy + k(2 cos 2¢)(dp/02y) = 0

If x, is along an « line and z, along a B line, ¢ =0 and these equations become —9p/dz; —
2k(d¢/02;) = 0 along the « line, —ap/dz, + 2k(dp/dxzy) = 0 along the g line. Integrating directly,
p + 2k¢ = C; on the « line, p — 2kg = C, on the B line.

8.29. In the frictionless extrusion through a square die causing a fifty per cent reduction,
the centered fan region is composed of straight radial g lines and circular « lines as
shown in Fig. 8-19. Determine the velocity components along these slip lines in
terms of the approach velocity U and the polar coordinates r and 4.

A 5
\ 2U —»
[4
— — - — ¢ —

Fig. 8-19

Along the straight g lines, d¢ = 0; and from (8.53), dv, =0 or v, = constant. From the
normal velocity continuity along BC, the constant here must be U cos ¢ and so vy = U coss. Along
the circular « lines, d¢ = d6; and from (8.52),

)
v, = f Ucosods = U(sine + 1/V2)
—1m/4
MISCELLANEOUS PROBLEMS

8.30. Show that the von Mises yield condition may be expressed in terms of the octahedral
shear stress o, (see Problem 2.22) by o, = V/20,/3.

In terms of principal stresses 3o = V(oy— omr)? + (o1 — o111)2 + (og;; —op)? (Problem 2.22)

and so 9¢2; = (o7 — oy)? + (011 — om)? + (o1 — 01)2 = 20% in agreement with (8.12).

8.31. Show that equation (8.13) for Mises yield condition may be written as
82 + 82 + s3; = 2k
From (2.71), oy = 8; + oy, etc., and so (8.18) at once becomes
(s1—8m)? + (Spp—8m1)? + (S —sp?2 = 6k2

Expanding and rearranging, this may be written sf + sfl + 8% — (sp+ s +81)2/8 = 2k But
sptsptsy = Iz = 0 and the required equation follows.
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8.32.

8.33.

8.34.

8.35.

8.36.

At what value of the Lode parameter u= (20, —0,— oy;)/(0;—0oy;) are the Tresca
and Mises yield conditions identical?

From the definition of x, oy = (oy+ oy1)/2 + plo; —~ oy;)/2 which when substituted into the
Mises yield condition (8.12) gives after some algebra (see Problem 8.42) o; — oy = 20y/V3 + 2.
Tresca’s yield condition, equation (8.8), is oy — oy = oy. Thus when u =1 the two are identical.
When o5 = o, =1 which is sometimes called a cylindrical state of stress.

e = 0
For the state of stress o, =7 o 0 where ¢ and » are constants, determine the
0 0 ¢

vield condition according to Tresca and von Mises criteria.
The principal stresses here are readily shown to be oy = o+ 7, oy =9, oy =o0—7.  Thus
from (8.8), the Tresca condition oy — oy = oy gives 27 = oy. From (8.12) the Mises condition

gives 7 = ay/\/§ . Note that in each case yielding depends on 7, not on o, i.e, yielding is independent
of hydrostatic stress.

Show that the Prandtl-Reuss equations imply incompressible plastic deformation and
write the equations in terms of actual stresses.

From (8.21), deg = 8;dA = 0 since sy = IzD =0 and the incompressibility condition def =0
is attained. In terms of stresses, deg = (05— 8;;0/3) dr. Thus def1 = (2/3)[01; — (ogp T 033)/2] dA,
etc., for the normal components and ulef2 = gyp dA, etc., for the shear components.

Using the von Mises yield condition, show that in the II-plane the deviator stress com-
ponents at yield are

8, = [20,co8(0 —=/6)]/3, s, = [20,c08(8 +=/6)]/3, s, = (20,8in0)/3
where § =tan~1Y/X in the notation of Problem 8.6.

The radius of the Mises yield circle is V/2/30y so that by definition X = \/_2—/§ay cosé,
Y = \/_2—/§ay sing at yield. From the transformation table given in Problem 8.6 together with
oy = §; + gy, ete., the equations s;— s = —V2X = —(2/V3)ey cose and s;+ sy — 28 =
—V6Y = —2¢y sin g are obtained. Also, in the TI-plane, s; + sy + sy = 0. Solving these three
equations simultaneously yields the desired expressions, as the student should verify.

An elastic-perfectly plastic, incompressible
material is loaded in plane strain between
rigid plates so that o,,=0 and ¢, =0 (Fig.
8-20). Use Mises yield condition to determine
the loading stress o,, at first yield, and the
accompanying strain e,.
The elastic stress-strain equation

Eey3 = a3 — v(oyy T0y)
reduces here to o33 = voy;. Thus the principal stresses
are oy =0, oy = —»ayy, omp = —oyy; and by (8.12)
we have

(v011)? + (0431 — »))2 + (—0y9)? = 207

from which oy; = —ay/V1—»—»2 (compressive) at
yield. Likewise, from Fe;; = a3 — v(agp +033) we

see that here ey = —ay(1 —»2)/EV1—» —»2 at yield. Fig. 8-20
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8.37. An elastic-perfectly plastic rec- 5
tangular beam is loaded in pure ¢
bending until fully plastic. Deter- M M _i_
mine the residual stress in the 1 .
beam upon removal of the bending f— b —
moment M. ' Fig. 8-:21

For the fully plastic condition, the moment is (see Problem 8.23) M = bc2sy. This moment
would cause an elastic stress having o = Mc/I = 30y/2 at the extreme fibers, since I = 2bc3/3.
Thus removal of M is equivalent to applying a corresponding negative elastic stress which results
in the residual stress shown in Fig. 8-22,

ay 3(Ty/2

a%
: NEN
_ % Y

2\

fully negative residual
plastic elastic stress
Fig. 8-22

8.38. A thick-walled cylindrical tube of the dimensions shown in Fig. 8-23 is subjected to
an internal pressure p,. Determine the value of p, at first yield if the ends of the tube
are closed. Assume (a) von Mises and (b) Tresca’s yield conditions.

a(06)

Fig. 8-23 Fig. 8-24
The cylindrical stress components (Fig, 8-24) are principal stresses and for the elastic analysis
may be shown to be o(,yy =—p;(b2/72— 1)/Q, o4y = 0;(b%/72 + 1)/Q, 0(r,) = p/Q Where Q = (b%/a2—1).
(a) Here Mises yield condition is
(G = 9o0))? T (989 — 9(z)? + (G(ay — 9mm)? = 203 or  plbi/rt = Q2%/3

The maximum stress is at » = a, and at first yield p; = (dy/\/g)(l — a2/b?),

(b) For the Tresca yield condition, o(gg) — o(syy = oy since o,, is the intermediate principal stress.
Thus 2p;b%/72 = Qoy and now at r = a, p; = (oy/2)(1 — a?/b2) at first yield.
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8.39.

8.40.

8.41.

8.42.

8.43.

8.44.

8.45.

8.46.

8.47.

8.48.

8.49.

8.50.

8.51.

Supplementary Problems

A one-dimensional stress-strain law is given by o = Ke® where K and n are constants and e is
true strain. Show that the maximum load occurs at ¢ = n.

Rework Problem 8.4 using the yield stress in shear % in place of oy in the Mises and Tresca yield
conditions. Ans. Mises: (a/\/§ k)2 + (v/k)2 = 1; Tresca: (o/2k)2 + (r/k)2 = 1

Making use of the material presented in Problem 8.6, verify the geometry of Fig. 8-5(c).

From the definition of Lode’s parameter ; (see Problem 8.3) and the Mises yield condition, show

that o; — opyy = 20y/V3 + 2.
In the TI-plane where ¢ = tan—! Y/X with X and Y defined in Problem 8.6, show that z = —/3 tans.

Show that the invariants of the deviator stress IIg p= 8;81/2 and IIIzD = s;;8xSKi/3 may be written
Iy = (7 +s% +s7)/2 and Iy = (s} +sf +sj,)/3 respectively.

Show that von Mises yield condition may be written in the form
(011 = 022)% + (05— 033)2 + (033 — 01))2 + 6(d%, + 03y +03;) = 6k2

Following the procedure of Problem 8.17, determine the plastic strain increment ratios for
(a) biaxial tension with o, = 09y = oy, (b) tension-torsion with ¢); = oy/2, ;5 = ay/2.

Ans. (a) dey, = del, = —def /2 (b) deb /2 = —def, = —def = deF, /3

Verify the following equivalent expressions for the effective plastic strain increment de',;Q and note
that in each case deby = def for uniaxial tension oy;.

(@) debg = V273 [(deF))2 + (defy )2 + (degg)? + 2(dely)? + 2(deby)? + 2(del, 2|12

(b) depq

(V2I3)[(de?) — deb))2 + (dely — deby )2 + (dely — deP)2 + 6(del,)? + 6(dess )2 + 6(del, )2]1/2

A thin-walled elastic-perfectly plastic tube is loaded in combined tension-torsion. An axial stress
o = ay/2 is developed first and maintained constant while the shear stress = is steadily increased
from zero. At what value of = will yielding first occur according to the Mises condition?

Ans. T = dy/z

Ty

The beam of triangular cross section shown in Fig. 8-25 f
is subjected to pure bending. Determine the location of b
the neutral axis (a distance b from top) of the beam when . ‘ h
fully plastic.  Ans. b= h/V2 3 NA N

45° 45°
Show that the stress tensor (8.41) becomes = 2k -

- k0 Fig. 8-25
o = k—p 0
0 0 —p T5s A

when referred to the axes rotated about x; by an angle ¢
in Fig. 8-8. C

angle of 30° as shown in Fig. 8-26. The pressure on AB
is k. Determine the pressure on AC. B

Ans. p = k(1 + «/3) Fig. 8-26

A centered fan of « circle ares and g radii includes an \K: k



Chapter 9

Linear Viscoelasticity

9.1 LINEAR VISCOELASTIC BEHAVIOR

Elastic solids and viscous fluids differ widely in their deformational characteristics.
Elastically deformed bodies return to a natural or undeformed state upon removal of
applied loads. Viscous fluids, however, possess no tendency at all for deformational
recovery. Also, elastic stress is related directly to deformation whereas stress in a viscous
fluid depends (except for the hydrostatic component) upon rate of deformation.

Material behavior which incorporates a blend of both elastic and viscous characteristics
is referred to as viscoelastic behavior. The elastic (Hookean) solid and viscous (Newtonian)
fluid represent opposite endpoints of a wide spectrum of viscoelastic behavior. Although
viscoelastic materials are temperature sensitive, the discussion which follows is restricted
to isothermal conditions and temperature enters the equations only as a parameter.

9.2 SIMPLE VISCOELASTIC MODELS

Linear viscoelasticity may be introduced conveniently from a one-dimensional viewpoint
through a discussion of mechanical models which portray the deformational response of
various viscoelastic materials. The mechanical elements of such models are the massless
linear spring with spring constant G, and the viscous dashpot having a viscosity constant 4.
As shown in Fig. 9-1, the force across the spring ¢ is related to its elongation ¢ by

o = Ge (9.1)
and the analogous equation for the dashpot is given by '
o = neé (9.2)

where ¢ =de¢/dt. The models are given more generality and dimensional effects removed
by referring to o as stress and « as strain, thereby putting these quantities on a per unit basis.

g g
G
n
1 1
G € i ¢
L « —] }Hﬂ
¢ Ao MWW @ o [T — o
(a) Linear Spring (b) Viscous Dashpot
Fig. 9-1

196
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The Mazxwell model in viscoelasticity is the combination of a spring and dashpot in series
as shown by Fig. 9-2(a). The Kelvin or Voigt model is the parallel arrangement shown in
Fig. 9-2(b). The stress-strain relation (actually involving rates also) for the Maxwell
model is

+2 = (9.3)

Q-
SR

and for the Kelvin model is
o = Ge+ ge (9.4)

These equations are essentially one-dimensional viscoelastic constitutive equations. It is
helpful to write them in operator form by use of the linear differential time operator
, = 98/dt. Thus (9.3) becomes

{8,/G + 1/n}o = {8,}e (9.5)

and (9.4) becomes
o = {G+9d}e (9.6)

with the appropriate operators enclosed by parentheses.

G U
aA—a—-’VV\N\/\/\f\—o——E[P—o—»d 0 “——o— —o—o

7

L=

(a) Maxwell : (b) Kelvin
Fig. 9-2

The simple Maxwell and Kelvin models are not adequate to completely represent the
behavior of real materials. More complicated models afford a greater flexibility in por-
traying the response of actual materials. A three-parameter model constructed from two
springs and one dashpot, and known as the standard linear solid is shown in Fig. 9-3(a). A
three-parameter viscous model consisting of two dashpots and one spring is shown in
Fig. 9-3(b). It should be remarked that from the point of view of the form of their con-
stitutive equations a Maxwell unit in parallel with a spring is analogous to the standard
linear solid of Fig. 9-3(a), and a Maxwell unit in parallel with a dashpot is analogous to the
viscous model of Fig. 9-3(b).

G2 G2
G, N
o ~a—o—AAAMANN—-o0— o a “—D:E—o-— Ot
Ny . N2
(a) Standard Linear Solid (b) Three-parameter Viscous Model
Fig.9-3

A four-parameter model consisting of two springs and two dashpots may be regarded
as a Maxwell unit in series with a Kelvin unit as illustrated in Fig. 9-4 below. Several
equivalent forms of this model exist. The four-parameter model is capable of all three of
the basic viscoelastic response patterns. Thus it incorporates ‘“instantaneous elastic re-
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sponse” because of the free spring G, “viscous flow” because of the free dashpot 7, and,
finally, “delayed elastic response” from the Kelvin unit.

Gy
AW

G, "

P

{ IE

Fig.9-4

The stress-strain equation for any of the three or four parameter models is of the

general form
P,0 + P&+ pyo = @€+ qe+ qge (9.7)

where the p,’s and g¢/’s are coefficients made up of combinations of the G’s and »’s, and depend
upon the specific arrangement of the elements in the model. In operator form, (9.7) is

written
{07 + 0,0, +Do}o = {q,07 + q,09, + Qe (9.8)

9.3 GENERALIZED MODELS. LINEAR DIFFERENTIAL OPERATOR EQUATION

The generalized Kelvin model consists of a sequence of Kelvin units arranged in series
as depicted by Fig. 9-5. The total strain of this model is equal to the sum of the individual
Kelvin unit strains. Thus in operator form the constitutive equation is, by (9.6),

g

o o
= + + o+ 9.9
) {G1+’716t} {G2+’726t} {GN+"7Nat} (9-9)

G Go Gy

AMAIA AWW—— AMAMW—
0 ~at—0— o- —o— — — — — — —o—} ——o— ¢
31 N9 IN
Fig. 9-5

Similarly, a sequence of Maxwell units in parallel as shown in Fig. 9-6 is called a generalized
Maxwell model. Here the total stress is the resultant of the stresses across each unit; and
so from (9.5),

Y

o = {at/Gl + 1/,71} + {at/c;2 T 1/?‘]2} 4+ .. + m (9I0)
G, G, G
71 'q2 ﬂN

Fig. 9-6



CHAP. 9] LINEAR VISCOELASTICITY 199

For specific models, (9.9) and (9.10) result in equations of the form
Dyo+ D0+ P+ - = qet qet gt - . (9.11)
which may be expressed compactly by
< d'e n d'e
;0 Pign = 20 9, 3 (9.12)
This linear differential operator equation may be written symbolically as
(P} = (Q)e (9.13)

where the operators {P} and {Q} are defined by

m i n ai
Py = izzopia_ti’ @ = izoqiﬁ (9.14)

9.4 CREEP AND RELAXATION

The two basic experiments of viscoelasticity are the creep and relaxation tests. These
tests may be performed as one-dimensional tension (compression) tests or as simple shear
tests. The creep experiment consists of instantaneously subjecting a viscoelastic specimen
to a stress ¢, and maintaining the stress constant thereafter while measuring the strain
(creep response) ag a function of time. In the relaxation experiment an instantaneous strain
¢, is imposed and maintained on the specimen while measuring the stress (relaxation) as a
function of time. Mathematically, the creep and relaxation loadings are expressed in terms
of the unit step function [U(t—t))], defined by

[UiE-t) = {1 b<t, (9.15) "
- 0 t>t¢ ===
and shown in Fig. 9-7.
For the creep loading, t £
o = o[UH)] ' (9.16) Fig. 9-7

where [U(?)] represents the unit step function applied at time ¢ = 0. The creep response
of a Kelvin material is determined by solving the differential equation
U(t
RN ALC) (9.17)
T i

which results from the introduction of (9.16) into (9.4). Here r = 4/G is called the retarda-
tion time. For any continuous function of time f(¢), it may be shown that with ¢’ as the
variable of integration,

t t
{ oo -tar = [oe-s) § fe)ar (9.18)
by means of which (9.17) may be integrated to yield the Kelvin creep response
(t) = @ 1—e U] 9.19)

The creep loading, together with the creep response for the Kelvin and Maxwell models
(materials) is shown in Fig. 9-8 below.
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Maxwell

L)

GG — — ——— —— —— — — =

Kelvin

o~
o~

(a) Creep Loading (b) Creep Response
Fig. 9-8
The stress relaxation which occurs in a Maxwell material upon application of the strain
e = ¢[U(?)] (9.20)
is given by the solution of the differential equation
o + o/ = Ge[3(1)] (9.21)

obtained by inserting the time derivative of (9.20) into (9.3). Here [§(f)] =d[U(?)]/dt is a
singularity function called the unit impulse function, or Dirac delta function. By definition,

[t—t)] = 0, t =t (9.220)
f T t—t)dt = 1 (9.220)

This function is zero everywhere except at ¢ =1¢ where it is said to have an indeterminate
spike. For a continuous function f(¢), it may be shown that when ¢> ¢,

t
|ty —enar = fe)[UE-1)] (9.23)
with the help of which (9.21) may be integrated to give the Maxwell stress relaxation
oft) = Geoe*‘/T[U(t)] (9.24)

The stress relaxation for a Kelvin material is given directly by inserting ¢ = ¢[5(?)]

into (9.4) to yield
o(t) = Gco[U(tﬂ + ﬂfo[s(t)] (9.25)

The delta function in (9.25) indicates that it would require an infinite stress to produce an
instantaneous finite strain in a Kelvin body.

9.5 CREEP FUNCTION. RELAXATION FUNCTION. HEREDITARY INTEGRALS

The creep response of any material (model) to the creep loading o= ¢ [U(f)] may be

written in the form
(t) = V¥(t)o, (9.26)

where ¥(t) is known as the creep function. For example, the creep function for the gen-
eralized Kelvin model of Fig. 9-5 is determined from (9.19) to be

W) = X JA—e U] (9.27)
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where J, = 1/G, is called the compliance. If the number of Kelvin units increases indefinitely
so that N=> « in such a way that the finite set of constants (r,,/,) may be replaced by the
continuous compliance function J(r), the Kelvin creep function becomes

¥t = j;wJ(f)a—e-t/f) dr (9.28)

The function J(+) is referred to as the “distribution of retardation times”, or retardation
spectrum.

In analogy with the creep response, the stress relaxation for any model subjected to the
strain ¢ = ¢ [U(f)] may be written in the form

a(t) = (t)e, (9.29)

where ¢(?) is called the relaxation function. For the generalized Maxwell model of Fig. 9-6,
the relaxation function is determined from (9.24) as
N .
#(t) = X Ge n[U(1)] (9.30)
=1 :
Here, as N~ « the function G(r) replaces the set of constants (G, r,) and the relaxation
function is defined by

s = f Gelerds (9.31)

The function G(r) is known as the “distribution of relaxation times”, or relaxation spectrum.

In linear viscoelasticity, the superposition principle is valid. Thus the total “effect”
of a sum of “causes” is equal to the sum of the “effects” of each of the “causes”. Accord-
ingly, if the stepped stress history of Fig. 9-9(a) is applied to a material for which the creep
function is ¥(¢), the creep response will be

e(t) = aO\If(t) + o‘l\If(t—tl) + 0'2\If(t—t2) + a'a‘If(t—ta) = iio ai\If(t—ti) (9.32)

Therefore the arbitrary stress history o= o(f) of Fig. 9-9(b) may be analyzed as an
infinity of step loadings, each of magnitude do and the creep response given by the super-
position integral .
_ do(t’) ,
() = ar w(t—t)dt (9.33)

— 0

Such integrals are often referred to as hereditary integrals since the strain at any time is
seen to depend upon the entire stress history.

ag a+&dt’————|———— |
___________ o b —— | |

] | |
I

| /! |
————————————— | |

|

|

|

() |

Fig. 9-9
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For a material initially “dead”, i.e. completely free of stress and strain at time zero, the
lower limit in (9.33) may be replaced by zero and the creep response expressed as

t , :
d(t) = d‘é(;) v(t—t) dt/ (9.34)
0
Furthermore, if the stress loading involves a step discontinuity of magnitude o, at ¢ =0,
(9.34) is usually written in the form
t ’
@t = out) + f sty ar (9.95)

Following similar arguments as above, the stress as a function of time may be rep-
resented through a superposition integral involving the strain history «(f) and the relaxation
function ¢(f). In analogy with (9.33) the stress is given by

bode(t)

o0 = J)__ ar

ot —t) dt’ (9.36)

and with regard to a material that is “dead” at ¢ =0, the integrals comparable to (9.84)
and (9.35) are respectively

oty = ) d(‘i(;') st —t) dt’ . (9.87)
and o) = ealt) + td;(:,') ot — 1) dt (9.38)

Since either the creep integral (9.34) or the relaxation integral (9.37) may be used to
specify the viscoelastic characteristics of a given material, it follows that some relationship
must exist between the creep function ¥(¢) and the relaxation function ¢(¢). Such a relation-
ship is not easily determined in general, but using the Laplace transform definition

flo = | “ft)e dt (9.99)

it is possible to show that the transforms ¥(s) and ¢(f) are related by the equation

T(S)p(s) = 1/s2 (9.40)

where s is the transform parameter.

9.6 COMPLEX MODULI AND COMPLIANCES

If a linearly viscoelastic test specimen is subjected to a one-dimensional (tensile or shear)
stress loading ¢ = ¢, sinwt, the resulting steady state strain will be ¢=¢; sin(ot—3), a
sinusoidal response of the same frequency » but out of phase with the stress by the lag angle
8. The stress and strain for this situation may be presented graphically by the vertical
projections of the constant magnitude vectors rotating at a constant angular velocity » as
shown in Fig. 9-10 below.

The ratios of the stress and strain amplitudes define the absolute dynamic modulus
a,/¢, and the absolute dynamic compliance ¢,/o,. In addition, the in-phase and out-of-phase
components of the stress and strain rotating vectors of Fig. 9-10(a) are used to define

o, COS &

(a) the storage modulus G, =

)
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sin &
(b) the loss modulus G, = %

)

cos 8
(¢) the storage compliance J, = i

%

sin §
(d) the loss compliance J, = %

%

a,e€

¢ = gy sin wt
a, .
€ = ¢ sin (w0t — §)
8
€0
e t
@ ®

(@) (b)

Fig.9-10

A generalization of the above description of viscoelastic behavior is achieved by
expressing the stress in complex form as

o* = g et (9.41)
and the resulting strain also in complex form as
eF = g eiet™® (9.42)
From (9.41) and (9.42) the complex modulus G*(i) is defined as the complex quantity
o*le* = G*(lo) = (o,/¢)e® = G, +1G, (9.43)

whose real part is the storage modulus and whose imaginary part is the loss modulus.
Similarly, the complex compliance is defined as

*lo* = J*(iw) = (efo,)e™®
) (9-44) o
= J, -, , G,
where the real part is the storage compli- 8 > !
ance and the imaginary part the negative G 7
of the loss compliance. In Fig. 9-11 the Js 2
vector diagrams of G* and J* are shown.
Note that G* = 1/J*. Fig. 9-11

9.7 THREE DIMENSIONAL THEORY

In developing the three dimensional theory of linear viscoelasticity, it is customary to
consider separately viscoelastic behavior under conditions of so-called pure shear and pure
dilatation. Thus distortional and volumetric effects are prescribed independently, and
subsequently combined to provide a general theory. Mathematically, this is handled by
resolving the stress and strain tensors into their deviatoric and spherical parts, for each of
which viscoelastic constitutive relations are then written. The stress tensor decomposition

is given by (2.70) as
( ) oy = Sy + Sijakk/s (9.45)
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and the small strain tensor by (3.98) as
€. — eij + Sijfkk/g (9.46)

) )

Using the notation of these equations, the three dimensional generalization of the viscoelastic
constitutive equation (9.13) in differential operator form is written by the combination

{P}Sij = Z{Q}ei;‘ (9.47a)
and {M}o’ii = 3{N}€ii (947())

where {P}, {Q}, {M} and {N} are operators of the form (9.14) and the numerical factors
are inserted for convenience. Since practically all materials respond elastically to moderate
hydrostatic loading, the dilatational operators {M} and {N} are usually taken as constants
and (9.47) modified to read

{P}s; = 2{Q}e, (9.48a)
o; = 3Ke; (9.48b)
where K is the elastic bulk modulus.

Following the same general rule of separation for distortional and volumetric behavior,
the three-dimensional viscoelastic constitutive relations in creep integral form are given by

= (e t—t)Bugy 9.49
eU = A s )W ( . (1)
_ ‘o (1%
o = v (t—t) 2 dt (9.490)
N at
and in the relaxzation integral form by
t .
5, = j; ¢s(t—t’)%dt’ (9.50a)
¢ Oe;; |
o = j; g (t—t)Shat (9.50b)

The extension to three-dimensions of the complex modulus formulation of viscoelastic
behavior requires the introduction of the complex bulk modulus K*. Again, writing shear
and dilatation equations separately, the appropriate equations are of the form

st = 2G*(w)er = 2(G,+1G,)e} (9.51a)
3(K, +1iK ) (9.51b)

of = BK*(iu)ek

9.8 VISCOELASTIC STRESS ANALYSIS.
CORRESPONDENCE PRINCIPLE

The stress analysis problem for an iso-
tropic viscoelastic continuum body which
occupies a volume V and has the bounding
surface S as shown in Fig. 9-12, is formulated
as follows: Let body forces b, be given
throughout V and let the surface tractions
tﬁs’(xk, t) be prescribed over the portion S, of
S, and the surface displacements g(z,,t) be
prescribed over the portion S, of S. Then
the governing field equations take the form
of: Fig.9-12
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1. Equations of motion (or of equilibrium)

oy, T b = pi (9.52)
2. Strain-displacement equations
2¢5 = (uy; +u;) (9.59)
or strain-rate-velocity equations
2¢; = (v, ;+v,) (9.54)
3. Boundary conditions n
’ o, (T, ) n () = ti¥(x,,t) onS (9.55)
u(x,, 1) = g,(x,,1) on S, 9.56)
4. Initial conditions
u,(2,,0) = u, 9.57)
v,(x,,0) = v, (9.58)

5. Constitutive equations
(a) Linear differential operator form (9.48)
or
(b) Hereditary integral form (9.49) or (9.50)
or

(¢) Complex modulus form (9.51)

If the body geometry and loading conditions are sufficiently simple, and if the material
behavior may be represented by one of the simpler models, the field equations above may be
integrated directly (see Problem 9.22). For more general conditions, however, it is con-
ventional to seek a solution through the use of the correspondence principle. This principle
emerges from the analogous form between the governing field equations of elasticity and the
Laplace transforms with respect to time of the basic viscoelastic field equations given above.
A comparison of the pertinent equations for quasi-static isothermal problems is afforded
by the following table in which barred quantities indicate Laplace transforms in accordance
with the definition

flz,,8) = j:o f(z,, t)e~stdt (9.59)
Elastic Transformed Viscoelastic

1. o,,+b =0 1. 5,,+b =0
2. 2¢; = (u;+u,) 2. 2¢ = (u,, +14,))
3. o,m, = t™ on§, 3. 5,4, = I™ onS,

u, = g, on S, %, = g, on S,
4. s, = 2Ge, 4. P(s)5, = 2Q(s)e,

o, = 3Ke, 5, = 3K¢

il i ii i

From this table it is observed that when G in the elastic equations is replaced by Q/P, the
two sets of equations have the same forin._Accordingly, if in the solution of the “correspond-
ing elastic problem” G is replaced by Q/P for the viscoelastic material involved, the result
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is the Laplace transform of the viscoelastic solution. Inversion of the transformed solution
yields the viscoelastic solution.

The correspondence principle may also be stated for problems other than quasi-static
. problems. Furthermore, the form of the constitutive equations need not be the linear dif-
ferential operator form but may appear as in (9.49), (9.50) or (9.51). The particular problem
under study will dictate the appropriate form in which the principle should be used.

Solved Problems
VISCOELASTIC MODELS (Sec. 9.1-9.3)

9.1. Verify the stress-strain relations for the Maxwell and Kelvin models given by (9.3)
and (9.4) respectively.

In the Maxwell model of Fig. 9-2(a) the total strain is the sum of the strain in the spring plus
the strain of the dashpot. Thus e =eg+ep and also ¢ = ég+¢ép. Since the stress across each
element is o, (9.7) and (9.2) may be used to give ¢ = /G + o/y.

. In the Kelvin model of Fig. 9-2(b), ¢ = o5+ op and directly from (9.1) and (9.2), o = né+ Ge.

9.2. Use the operator form of the Kelvin model stress-strain relation to obtain the stress-
strain law for the standard linear solid of Fig. 9-3(a). '

Here the total strain is the sum of the strain in the spring plus the strain in the Kelvin unit.
Thus e = eg + ex or in operator form e = o/G, + ¢/{Gy+ 750;}. From this

G{Gs + ngdite = {Gy+mgd}o + Gyio
and so G1G2€ + Gl'ﬂz; = (Gl + G2)(T + '02(;.

9.3. Determine the stress-strain equation for the four parameter model of Fig. 9-4. Let
7, > © and compare with the result of Problem 9.2.

Here the total strain e = ex + ¢y which in operator form is
e = a/{Gy+ 729} + {8, + 1/71}0/G {8}
Expanding the operators and collecting terms gives
G+ (Gy/m + (G + Go)/nx) 6 + G\Gyo/niny = G€+ G1Goé/ny

As 7, —> « this becomes 7+ (G) + Gy)o/9y = G,€+ G,Gyé/n, which is equivalent to the result of

Problem 9.2.
9.4. Treating the model in Fig. 9-13 as a G, !
gpecial case of the generalized Max- — WWWA——+
well model, determine its stress-strain
equation. -0 -
Writing (9.10) for N =2 in the form G, kb
—AMWWWW——
o = Gé/{o;+ 1/r} + Goé/{8;+ 1/75}

and operating as indicated gives Fig.9-13
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9.5.

{8; + 1/ro3(6 + o/m) = G{8; + 1/ro} e+ Go{d +1/7 )} ¢
which when expanded and rearranged becomes

G+ (1, F r)alryry + olriry = (Gy+ G) €+ (Gy/my + Golry)é

The model shown in Fig. 9-14 may be considered as a
degenerate form of the generalized Maxwell model with 1"
G, =9, =« for the case N =3. Using these values in
(9.10) develop the stress-strain equation for this model. .
3
Here (9.10) becomes o = 7, + Goe/{8;} + ¢/{8,/G3 + 1/n3} or %G
2
{at/Gg + 1/'03}(; = {at/G;; + 1/”3}(”1‘5"*' GzE) + E 73 m
Application of the operators gives L
3/G3 + (.T/'ﬂa = ﬂl.é./G;; + (1 + Gg/G;; + 7]1/773).5.+ Gz/"lsé Ia '
which may also be written
'q3(.1 + G3(7 = ﬂlﬂ3.€'+ (G27]3+ G37]1 + G37)3); + GstE Fig. 9-14

CREEP AND RELAXATION (Sec.9.4)

9'6.

9.7.

9.8.

(9.23),

Determine the Kelvin and Maxwell creep response equations by direct integration of
(9.17) and (9.21) respectively.

a t
Using the integrating factor et/7, (9.17) becomes eet/7 = =2 f et’/T{U(t")] dt’ which by formula
(9.18) yields L)

eet’T = (ao[UW))/n)[ret"’7)l = (ao/G)(et/m — 1)[U(2)] or e = (a/G)(1— e~ t/T)[U(t)]
t
Use of e/7 as the integrating factor in (9.21) gives g€t/ = Ge, f et’/T[8(t")] dt’; and by formula
0

oet/T = Ge[U(t)]  or g = Gee t/TU(t)]

Determine the creep response of the standard linear solid of Fig. 9-3(a).
Since ¢ = eg + ex for this model the creep response from (9.7) and (9.19) is simply
(t) = [1/G,+ (1/Gp) (1 — e~ t/Ta)]ao[U(t)]
The same result may be obtained by setting 5, = « in the generalized Kelvin (N = 2) response
e = iél Ji(1 — e~ t/T)ao[U(t)] or by integrating directly the standard solid stress-strain law. The

student should carry out the details,

The creep-recovery experiment consists of a .
creep loading which is maintained for a period
of time and then instantaneously removed.
Determine the creep-recovery response of the To——
standard solid (Fig. 9-3(a)) for the loading !
shown in Fig. 9-15. o

9 t

From Problem 9.7 the response while the load is
on (<27, is

e = oo[l/Gy + (1/GR)(1 — e=t/73)] Fig. 9-15
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9.9.

9.10.
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At t = 27, the load is removed and ¢ becomes zero at the same time that the “elastic” deformation
ao/G, is recovered. For ¢ > 2r, the response is governed by the equation ¢+ ¢/ry = 0 which is
the stress-strain law for the model with ¢ = 0 (see Problem 9.2). The solution of this differential
equation is ¢ = Ce~T/7; where C is a constant and T =¢t—2r,. At T =10, e=C = oo(1 — ¢72)/G,
and so

€ = Go(l—e_z)e_T/Tz/Gz = (70(92_‘ l)e_t/T2/G2 for t> 27‘2

The special model shown in Fig. 9-16 is elongated at a constant rate ¢=¢,/t, as
indicated in Fig. 9-17. Determine the stress in the model under this straining.

J\/\N\(/;VWV de
G - n
EO __________
~——ww— F— |
|
L |
| _
t >t
Fig. 9-16 Fig. 9-17

From Problem 9.5 the stress-strain law for the model is o + o/r = 7%+ 3Geé + Ge/r and so
here ¢ + a/r = 8Gey/ty + Geyt/rt,. Integrating this yields o = (87 + Gt—17) + Ce~t/T where C
is the constant of integration. When t = 0, o = 7¢/t; and so C = —yeft;. Thus o =
(27 + Gt — ne—t/7)/t;. Note that the same result is obtained by integrating

t t gttty
et/ = 2 f 3Get'IT g’ +59f GUetIT 4y
ty 0 t Jy T

Determine by a direct integration of the stress-strain law for the standard linear
solid its stress relaxation under the strain = ¢ [U(?)].

Writing the stress-strain law (see Problem 9.2) as & + (G, + Gyla/n, = ,G1([6(t)] + G1Go[U(t)]/n2)
for the case at hand and employing the integrating factor e(Gi+Gt/n2 jt is seen that
t €0G1G2 ¢
0eC1+Gt/my = G, f [5(')]e<Ga+Get/inz gt! + ___f [U(t)])e(G1+ Gt /ma dy!
0 2 0
Integrating this equation with the help of (9.18) and (9.23),

o = GGy + Gie™ Gt &) [U(8))/ (G, + Gy)

CREEP AND RELAXATION FUNCTIONS. HEREDITARY INTEGRALS (Sec. 9.5)

9.11.

Determine the relaxation function ¢(¢) for the Gy
three parameter model shown in Fig. 9-18. ——— WWWWh—
The stress-strain relation for this model is -—o— . o>
G 2

g+ o/ry = (Gy+ Gy)e + G Gaelny MM2M || }_

and so with e = ¢[U(t)] and ¢ = ¢[8(t)] use of the
integrating factor et/7; gives Fig. 9-18

f C evmU)] av
0

Thus by use of (9.18) and (9.28), o = ¢(G;+ Goe™t/T2) = ¢¢(t). Note that this result may also be
obtained by putting 7, = « in (9.30) for the generalized Maxwell model.

¢ G
get/Ty, = EO(Gl + Gz) f et’/"'z[b‘(t’)] dt’ + M
0 T2




CHAP. 9] LINEAR VISCOELASTICITY 209

9.12. Using the relaxation function ¢(¢) for the model of Problem 9.11, determine the creep
function by means of (9.40).

The Laplace transform of ¢(t) = Gy + Gye~t/7; is 3(8) = G,/3 + Gy/(s + 1/7,) (see any stand-
ard table of Laplace transforms). Thus from (9.40),

v(s) = (s+ 1/m/[Gis(s + 1/ry) + Gp8?] = 1/Gys — [Go/ GGy + G))/(s + G1/(Gy + Gy)rp)
which may be inverted easily by a Laplace transform téble to give
v = 1/Gy — [Go/Gy(Gy + Gy)]e~ Gt/ (G +GpTy

This result may be readily verified by integration of the model’s stress-strain equation under creep
loading.

9.13. If a ramp type stress followed by a sus-
tained constant stress o, (Fig. 9-19) is
applied to a Kelvin material, determine
the resulting strain. Assume o/t =A.

The stress may be expressed as
e = M[U®)] — Mt —t,)[U(t - ¢,)]

which when introduced into (9.4) leads to

t t
eet/T = %[J; t'et’/T[U(t)] dt’ — f (t' = t))et/T U — t,)] dt’]

ty

Y

Fig. 9-19

Integrating with the aid of (9.18) gives
e = (WO{(t+ e tT—1)UER)] — ((t—¢t) + weCa=/T—1)U(t—t)]}

which reduces as t = «© to = At;/G = 0,/G.

9.14. Using the creep integral (9.34) together with the Kelvin creep function, verify the
result of Problem 9.13.

For the Kelvin body, ¢(t) = (1 —e~t7)/G and (9.84) becomes
¢
e(t) = f %([U(t’)] + t[s(t)] — (U@ — )] — (¢ — t)[8(¢' — t)])(1 — e~ C~tD/7) d¢’
which by (9.18) and (9.23) reduces to

¢
e = %[[U(t)]f (1—e~t=O/T) g/ — [U(t—tl)]ft (1 — e=Ct=t/7) dt’]
0

t

A straightforward evaluation of these integrals confirms the result presented in Problem 9.13.

9.15. By a direct application of the superposition principle, determine the response of a
Kelvin material to the stress loading shown in Fig. 9-20.

a
A

A
1 1 N
t 2t; 3t t
rias . ?B\M ¢
t ) 1 1

Fig.9-21
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The stress may be represented as a sequence of ramp loadings as shown in Fig. 9-21 above.
From Problem 9.13, ¢ = (A/G)[t+ 7(e~t/7—1)][U(t)] for this stress loading. In the present case
therefore

e(t) = WAL+~ t/T— IN[UER)] — (t—ty) + (e~ C—tP/T—1)[U(t — ¢t,)]
—((t—2ty) + re~t—2tD/T— 1)Ut — 2t)] + ((t — 3ty) + r(e~¢=3t/T— 1))[U(t — 3¢t))]]
Note that as t > =, ¢—> 0.

COMPLEX MODULI AND COMPLIANCES (Sec.9.6)

9.16. Determine the complex modulus G* and the lag angle 8 for the Maxwell material of
Fig. 9-2.

Writing (9.8) as o+ d/r = Gé¢ and inserting (9.41) and (9.42) gives twggeivt + gpelot/r =
Gilwegei(wt=® from which o¢e®/ey = G* = Giwr/(1 + iwr), or in standard form

G* = G(272+ ior)/(1 + w?72)
From Fig. 9-11, tan § = Go/G; = Gur/Gu2r2 = 1/er.

9.17. Show that the result of Problem 9.16 may also be obtained by simply replacing the
operator 9, by 7» in equation (9.5) and defining o/e = G*.

After the suggested substitution (9.5) becomes (iw/G + 1/9)0 = 4we from which

ale = Gio/(io +1/7) = Gior/(1 + twr)
as before.

9.18. Use equation (9.10) for the generalized Maxwell model to illustrate the rule that
“for models in parallel, the complex moduli add”.

From Problem 9.17 the complex modulus for the Maxwell model may be wntben G* = ole =
Gior/(1 + 1w7).  Thus writing (9.10) as

o = G{8)e/{d; +1/r} + Go{oye/{os+ 1/} + <+« + Gploe/{d,+ 1/Ty}
the generalized Maxwell complex modulus becomes
G* = Gyiur/(1+iur) + Galory/(1 +i0ry) + +*+ + Gyiwry/(1+iery) = Gf+ Gy + -++ + Gy

9.19. Verify the relationship J,=1/G (1 +tan*8) between the storage modulus and
compliance,

From (9.48) and (9.44), J* =1/G* and so Jy —iJ, = 1/(Gy +iGy) = (G, —1Gy)/(G? + G3).
Thus
Jy = GG + G2) = 1/Gy(1 + (Go/Gp?) = 1/Gy(1 + tan2s)

9.20. Show that the energy dissipated per cycle is related directly to the loss compliance

J, by evaluating the integral f o de over one cycle. ,

For the stress and strain vectors of Fig. 9-10, the integral f o de evaluated over one cycle is

2w/w de 2n/w
f 4 at dt = f (ag sin wt)egw cos (ot — 8) dt
0 0

27/ w
= oggegw f sin @t (coS wt cos 8 + sin ot sin §) dt
0

2m/w 27/
2wt
a%w[-’lf sm = at + sz (sin2 ot) dt] = o2nJy
0 0
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THREE DIMENSIONAL THEORY. VISCOELASTIC
STRESS ANALYSIS (Sec. 9.7-9.8)

9.21. Combine (9.48a) and (9.48b) to obtain the viscoelastic constitutive relation o, =
8,{R}e, + {S}¢, and determine the form of the operators {E} and {S}.

Writing (9.48a) as {P}(0;; — 84j0,k/3) = 2{Q}(e;; — Sijexx/3) and replacing oy here by the right hand
side of (9.48b), the result after some simple manipulations is ’

9.22. A bar made of Kelvin material is pulled in tension so that o, = ¢,[U(?)], o

= G, =
22 33
2 = 053 = 05, = 0 where o, is constant. Determine the strain ¢, for this loading.

From (9.48b), 3e; = oo[U(t)]/K for this case; and from (9.48a) with i =j =1, {P}(o;; —0,,/3) =
{2Q}(ey; — :/3). But from (9.6), {P} =1 and {Q} = {G + 79,4 for a Kelvin material; so that now

200 U(1)])/8 = 2{G + nde}(ery — ao[U(¢)]/9K)
or Gy e/t = a[UW®IEBK + G)/9K + ao[8(t)]/9K

g

0 1

Solving this differential equation yields
1 = ooBK+ )1 — et/ [U)])/9KG + age~t/7[U(t)]/9K
As t— o, ¢ > (BK+ G)ap/9KG = oy/E.

9.23. A block of Kelvin material is held in a container
with rigid -walls so that ¢, =¢, =0 when the
stress o, = —o,[U(t)] is applied. Determine ¢,
and the retaining stress components o,, and o,

22
for this situation.

Here e; = ¢;; and oy = o33 so that (9.48b) becomes
011 + 2099 = 3Key; and (9.48a) gives 2(oyy — 099)/3 =
2G{1 + 79;}(2¢;,/8) for a Kelvin body. Combining these

relations yields the differential equation Fig.9-22
&1 + (4G 3K)e /AGT = —3a[U(t)]/4Gr
which upon integration gives
&1 = —30[U(®)](1 — e~ (4G + 3K)t/4G7) /(4G + 3K)

Inserting this result into (9.48a) for 1= j =2 gives
a9s = (+0¢/2 — 9Kap(1 — e~ (4G +3K)1/4G7)/(8G + 6K))[ U(t)]

9.24. The radial stress component in an elastic half-
space under a concentrated load at the origin
may be expressed as

Oy = (PI20)[(1— 2v)a(r, 2) — B(r,?)]

where « and g are known functions. Determine
the radial stress for a Kelvin viscoelastic half-
space by means of the correspondence principle
when P = P [U(t)]. Fig.9-23
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9.25.

9.26.

9.27.
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The viscoelastic operator for the term (1 —2») is {3Q}/{3KP + Q} so that for a Kelvin body
the transformed viscoelastic solution becomes

_ . 3P, . G + 78
Ty = ‘é;g\:ma(%z) - /3(7‘,2)]

which may be inverted with help of partial fractions and transform tables to give the viscoelastic
stress

3P, G 3K
= — — (3K + G)t/
T(rr) o [<3K+ G + K1 G° n ) a(r,z) + B(r,2)

The correspondence principle may be used to obtdin displacements as well as stresses.
The z displacement of the surface of the elastic half space in-Problem 9.24 is given by
W~y = P(1 —+?)/Exr. Determine the viscoelastic displacement of the surface for
the viscoelastic material of that problem. :

The viscoelastic operator corresponding to (1 —yé)/E is {3K+4Q}/4Q(8K + Q) which for the
Kelvin body causes the transformed displacement to be

Wm0y = Po(BK + 4(G + 18))/4zrs(8K + G + 28)(G + »s)

After considerable manipulation and inverting, the result is

_ PyBK+4G)[1 8¢~ (3K +G)t/n 8K+ G _,
Wae=o T 123K+ G) | G 3K+ 4G  GBE+46)°

Note that when ¢t =0, w =9y = 0 and when t—> ©, w=¢) > Po(1 —»2)/Exr, the elastic deflection.

A simply supported uniformly loaded beam is HEEEEREEREL
assumed to be made of a Maxwell material. SEEE— x,
Determine the bending stress o, and the deflec- 2L
tion w(x ,t) if the load is p = p [U(?)]. , Fig. 9-24
The bending stress for a simply supported elastic beam does not depend upon material properties,
so the elastic and viscoelastic bending stress here are the same. The elastic deflection of the beam
is w(x,) = pya(x,)/24EI where o(z)) is a known function. For a Maxwell body, {P} = {9,+ 1/7}
and {Q) = {Gd,}, so that the transformed deflection is
5 = poa(z)) [(3K/r + (3K + G)s
- 241 9KGs?
which when inverted gives
_ pealx) [t 3K+ G
w@pt) = 57 <3_n * ToKG
When t =0, w(x,,0) = pya(z,)/24EI, the elastic deflection.
Show that as ¢ > « the stress o,, in Problem 9.23 approaches ¢, (material behaves as

a fluid) if the material is considered incompressible (v = 1/2).
From Problem 9.23,
oplt e = —0o(9K — (4G + 3K))/2(4G +3K) = —ao(3K —2G)/(3K + 4G)

which may be written in terms of » as oli_ 4, = —vep/(1 —v). Thus for » =1/2, apf;, = —op.
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MISCELLANEOUS PROBLEMS

9.28.

9.29.

9.30.

Determine the constitutive relation for the Gy 71
Kelvin-Maxwell type model shown in Fig, . AMVWWW— :[]:'——
9-25 and deduce from the result the Kelvin
and Maxwell stress-strain laws. —o G, L o
Here MWW

g = oy + o = é/{at/Gl + 1/"71} + {G2+77263}€ M9
which upon application of the time operators ” I[
becomes

o+ a/ry = ny€+ (Gy+ Gy +nglry) E + (Golry)e Fig. 9-25

In this equation if 7, =0 (spring in parallel with Maxwell), ¢+ o/ry = (G, + Gy)e + (Go/7y)e.
Further, if G, =0, the Maxwell law o+ o/7) = G ¢ results. Likewise, if G, is taken zero first
(dashpot .in parallel with Maxwell), ¢+ o/r; = 55+ (G, + ny/7y)e; and when g5, =0, this also
reduces to the Maxwell law,

If the four-parameter constitutive relation is rewritten
'ﬂl& + Gla = 7)17}2.5' ’+‘ (Glﬂ1+ G2ﬂ1+ Glﬂz); + GIG2G

and 7, set equal to zero, the result is the Kelvin law ¢ = 7y¢ + Gge. Likewise, if G; =0 the
reduced equation is o = 7,€ + Gy¢, again representing the Kelvin model.

\

Use the superposition principle to obtain
the creep recovery response for the stand-
ard linear solid of Fig. 9-3(a) and compare
the result with that obtained in Problem 9.8.

a0

With the stress loading expressed by

o = do[U(t)] — ao[U(t —21-2)] —og|——————

(see Fig. 9-26), the strain may be written at once
from the result of Problem 9.7 as Fig.9-26

e = go(1/Gy + (1 — e~ t1)/G)[U()] — 0o(1/Gy + (1 — e~ (¢ = 27)7,)/Go) [U(t ~ 27)]
At times t > 27, both step functions equal unity and
e = ogg(—eUTp+e— 272)/72)/(;2 = 60(82 -~ l)e_t/"z/Gz

which agrees with the result in Problem 9.8.

Determine the stress in the model of Prob-
lem 9.9 when subjected to the strain history
shown in Fig. 9-27. Show that eventually
the “free” spring in the model carries the
entire stress. t,

S

From Problem 9.9 and the superposition prin-
ciple the stress is Fig. 9-27

o = en@—e~t/7) + GO[U®)]/t;, — en(@ —e~t—t/7) + G(t— ;))[UE — t1)]/¢,

For times ¢ > t;, the stress is o = ey(et/7—1)e~t/7/t; + Ge¢, and as t—> = this reduces to
o = Ge.
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9.31.

9.32.

9.33.

9.34.

LINEAR VISCOELASTICITY [CHAP. 9

The “logarithmic retardation spectrum” L is defined in terms of the retardation spec-
trum J by L(ln 7) = +J(7). From this definition determine the creep function ¢(¢) in
terms of L(In 7). '

Let In? =\ so that e* =7 and thus dr/dA =e* =17, or dr = rd(In7). From this, (9.28)
defining y(t) becomes y(t) = f L(n7)(1 —e~t7)d(In7). In the same way, if H(nr) = rG(r)
0

defines the logarithmic relaxation spectrum, ¢(t) in (9.87) may be written

#(t) = f ) H(ln r)e—t/7d(In 7)
0

For the Maxwell model of Fig. 9-2(a) deter-
mine the storage and loss moduli, G, and
G, as functions of Inwr and sketch the
shape of these functions.
From Problem 9.16,
G* = Glu2r?+ion)/(1 + w2r?) o
for a Maxwell material. Thus

Gy = Gu2r/(1+ w22 = GeM(1+ e2)

where A =Inwer. For A =0, G,=G/2; for
A=, G;=G; and for A = —», G, = 0. Like-

wise G, = Ger/(1+e2) and for A =0, G, = G/2; -2 -1
for A = *®, G, = 0. The shape of the curves for
these functions is as shown in Fig. 9-28. Fig. 9-28

Determine the viscoelastic operator form of the elastic constant » (Poisson’s ratio)
using the constitutive relations (9.48).

Under a uniaxial tension o4y = g9, (9.48D) gives ¢;/3 = 0¢/9K so that (9.48a) for i=j =1
yields ¢, = {3KP + Q}oy/{9KQ}. In the same way (9.48a) for ¢ = j = 2 yields &, =
{2Q —3PK}q¢y/{18KQ}. Thus in operator form, » = —ey/e;; = {3PK —2Q}/{6KP + 2Q}.

A cylindrical viscoelastic body is inserted into a

rigid snug-fitting container (Fig. 9-29) so that

€, = 0 (no radial strain). The body is elastic in

dilatation and has the creep function ¢, = A + T

Bt + Ce* where A,B,C,\ are constants. If I3

&3 = €[U(%)], determine o,,(t). ‘_1_
Here o; = 3Ke; and by the symmetry of the problem,

204y + 033 = 3Kegs. Also from (9.50a) with © = j = 1,

* degg ’ .
g1y — O35 = — yra ¢(t—t')dt’. Solving for ¢33 from
0
these two relations we obtain . Fig. 9-29
2 t degs
o33 = Kegg + 3 J; rTa o5t — t') dt’

The relaxation function ¢, may be found with the help of (9.40). The result is
#s = [(r—Aemt — (ry— Nent]/(ry — ry)
where 7, =[AA — B =V (A\N+ B)2+ 4BCA]/2(A + C). Thus finally
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(ry = Nert=t) — (ry — \)era(i—t)]

(ry—7p)

t
- g33 = Kéot + '23‘f EO [ [U(tl)] dtl
0

which upon integration gives

o33 = (K&t + 2&[—(ry — N(1 — en9)/3ry + (ry— N(1 = e72t)/3ry]/(ry — 1)) [U(8)]

9.35. The “creep buckling” of a viscoelastic column may be analyzed within the linear
theory through the correspondence principle. Determine the deflection w(x,,t) of a
Kelvin pinned-end column by this method.

>- d

Py w(wy, t) Py xy

7. 4

T
Fig.9-30

The elastic column formula is d2w/dx} + Pow/EI = 0, and for a Kelvin material E may be
replaced by the operator {E + 73, so that for the viscoelastic column {E + d.)(d?w/d=?) +
Pow/I = 0. Assuming the deflection in a product form w(z,,t) = W(z,)6(t), the operator leads to
the differential equation

(E6 +76)(d2W/dx?) + PyWe/I = 0 from which 6 + [1 + PoyW/EI(@2W/dz?)|e/r = 0

where 7 = y/E. But the elastic buckling load is Py = —E’I(dZW/d:cf)/W and so 6+
(1 —Py/Pg)s/r = 0 which integrates easily to yield ¢ = e(Po/Pr~Dt/7,  Finally then the “creep
buckling” deflection is w = We(Po/Pa—~Dt/7,

9.36. Formulate the steady-state vibration problem for a viscoelastic beam assuming the
constitutive relations are those given by (9.48).

The free vibrations of an elastic beam are governed by the equation EI(a‘*w/ax‘f) +
pA(02w/3t2) = 0. From (9.48) the viscoelastic operator for E is {9KQ/(3KP + Q)}, and if the deflec-
tion w(x,, t) = W(x,)6(t) the resulting viscoelastic differential equation may be split into the space
equation d4W/dx? — kW = 0 and the time equation {3KP -+ Q}(d?6/dt?) + (k*I/pA){9KQ}(s) = 0.
The solution W; of the space equation represents the ith mode shape, and from the time equation for

N
k =k; the solution 6; = 3 A;erit where N depends upon the degree of the operator. The total
i=1

w N
solution therefore is w(z;,t) = 3 3 Wi(z)A etit in which the A; are complex.

i=1 j=1

Supplementary Problems

9.37. Determine the constitutive equation for the four parameter model shown in Fig. 9-31.
Ans. ¢+ (Gy/ng+ Gofng+ Gl/ﬂl)& + (G1Go/mngde = G,€+ (G,Gofng) e
G,
—— MWW
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9.38.

9.39.

9.40.

9.41.

9.42.

9.43.

9.44.-

9.45.

LINEAR VISCOELASTICITY [CHAP. 9

Determine the creep response of the standard linear solid by direct integration of ¢+ e/r, =
oo[UBG, + Go)/Gyng + 0o[8(t)]/Gy. (See Problem 9.7.)

Deduce the Kelvin and Maxwell stress-strain laws from the results established in Problem 9.5 for
the four parameter model of that problem. (Hint. Let Gz =0, etc.)

Use equation (9.40) to obtain y(t) if ¢(t) = a(b/t)™ G,
with m < 1. (Hint. Take m =1—k; then o(t) =

. m
abmtc=1)  Ams. y(t) = —s%‘"%”-(@

Determine the creep and relaxation functions for the
model shown in Fig. 9-32.

Ans. (1) = 1/G, — Gre—Cat/(Ci+C7/Go(Gy + Gy)
#(t) = Gy + Gre~t/my

Determine G* for the model shown in Fig. 9-33.

Gi(1 +726?) + Gou?r} w(Gara + n3(1 + 722))
Ang. G* = + i
1+ w27'§ 1+ w21‘§

AWM €

B —— — — — — — —

G, n2

@ ———

!
|
|
13 I |

I ¢"t
—]] |L t 2t

Fig. 9-33 Fig. 9-34

In the model of Problem 9.42 let G, = G, =G and 7, = 73 =7 and determine the stress history
of the resulting model when it is subjected to the strain sequence shown in Fig. 9-34.

Ans. ¢ = :—O(G(2t —~t,) + n(d— (1 + et/ e=t/7) for t, <t < 2t
1

A viscoelastic block having the constitutive equation ¢ + ac = Be+ ye where o, 8,y are con-

stants is loaded under conditions such that o), = —oy[U(t)], 09, =0, e3 =0 (see Fig. 9-35).
ASSuming 05 = 3K€ii’ determine 033(t), 033(0) and 033(‘”).

_ _ [ 8K —2y 3K —28  3.K—2y\ _,, _
Ans. o3 “0[2(3aK o <2(3K TA) 2@aKF o) ¢ | Where A = (BaK+y)/BK + f).

wy sin (ra/l)
P&M{U(t)} .
7 ¢ 7.
| , |
o = —oolU(1)] ! ]
Fig. 9-35 Fig. 9-36

A pinned-end viscoelastic column is a Maxwell material for which ¢ + o/r = Eé&. The initial
shape of the column is w = w, sin (z=/l) when the load P, [U(t)] is applied (see Fig. 9-36). Deter-
mine the subsequent deflection w(x,, t) as a function of Py, the elastic buckling load.

Ans. w(xz,,t) = wy sin (7x,/l)e—t/(1—Pp/PT




Absolute dynamic,
compliance, 202
modulus, 202
Acceleration, 111
Addition and subtraction,
of matrices, 17
of (Cartesian) tensors, 15
of vectors, 2
Adiabatic process, 140
Airy stress function, 147
Almansi strain tensor, 82
Angle change, 86
~ Angular momentum, 128
Anisotropy, 44, 141
Antisymmetric,
dyadic, 5
matrix, 19
tensor, 19
Axis of elastic symmetry, 142

Barotropic change, 161
Base vectors, 6
Basis, 6, 9

orthonormal, 6
Bauschinger effect, 176
Beltrami-Michell equations, 144
Bernoulli equation, 164
Biharmonic equation, 148
Body forces, 45
Boundary conditions, 144, 145
Bulk,

modulus, 143

viscosity, 161

Caloric equation of state, 132
Cartesian,

coordinates, 6

tensors, 1, 12, 13
Cauchy,

deformation tensor, 81

strain ellipsoids, 89

stress principle, 45

stress quadric, 50
Cauchy-Riemann conditions, 165
Circulation, 164

Kelvin’s theorem of, 165
Clausius-Duhem inequality, 131
Column matrix, 17
Compatibility equations, 92, 114
Complex,

niodulus, 202

potential, 166
Compliance, 201
Component, 1, 7
Comipressible fiuid, 165
Configuration, 77
Conformable matrices, 17

INDEX
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Conjugate dyadic, 4
Conservation of,

energy, 128

mass, 126
Constitutive equations, 132
Continuity equation, 126
Continuum concept, 44
Contraction, 16
Contravariant tensor, 11
Convective,

derivative, 110

rate of change, 111
Conventional stress and strain, 175
Coordinate transformation, 11
Correspondence principle, 205
Couple-stress vector, 45
Coupled heat equation, 150
Covariant tensor, 12
Creep,

function, 200

test, 199
Cross product, 3, 5, 16
Cubical dilatation, 90
Curvilinear coordinates, 7
Cylindrical coordinates, 8

Dashpot, 196
Decomposition,

polar, 87

velocity gradient, 112
Deformation, 77

gradients, 80

inelastic, 175

plane, 91

plastic, 175

tensors, 81

total (deformation) theory, 183
Del operator, 22
Density, 44, 126

entropy, 130

strain energy, 141
Derivative,

material, 110, 114

of tensors, 22

of vectors, 22
Deviatoric,

strain tensor, 91

stress tensor, 57
Diagonal matrix, 17
Dilatation, 90
Direction cosines, 7
Displacement, 78, 83

gradient, 80

relative, 83
Dissipation function, 132
Dissipative stress tensor, 131
Distortion energy theory, 178
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Divergence theorem (of Gauss), 23
Dot product of,

dyads, 5

vectors, 3
Duhamel-Neumann relations, 149
Dyadics, 1, 4

antisymmetric, 4

conjugate of, 4

symmetric, 4
Dyads, 4

nonion form, 7
Dynamic moduli, 203

Effective,
plastic strain increment, 182
stress, 182
Elastic,
constants, 141
limit, 175
symmetry, 142
Elasticity, 140
Elastodynamics, 143
Elastoplastic problems, 183
Elastostatics, 143
Energy,
kinetic, 129
strain, 141
thermal, 129
Engineering stress and strain, 175
Entropy, 130
specific, 130
e—5 identity, 39
Equations of
equilibrium, 48, 128
motion, 128
state, 130
Equivalent,
plastic strain increment, 182
stress, 182
Euclidean space, 11
Eulerian,
coordinates, 78
description, 79
finite strain tensor, 82
linear strain tensor, 83

Field equations,
elastic, 143, 147
viscoelastic, 205
Finite strain tensor, 81, 82
First law of thermodynamics, 129
Flow, 77, 110
creeping, 169
irrotational, 164
plastic, 175
potential, 175
rule, 181
steady, 163
Fluid, )
inviscid, 160
perfect, 160, 164
pressure, 160

Forces,

body, 45

surface, 45
Fourier heat law, 149
Fundamental metric tensor, 13

Gas,
dynamical equation, 165
law, 160
Gauss’s theorem, 23
Generalized,
Hooke’s law, 140
Kelvin model, 198
Maxwell model, 198
plane strain, 147
plane stress, 147
Gibb’s notation, 2
Gradient,
deformation, 80
displacement, 80
Green’s
deformation tensor, 81
finite strain tensor, 82

Hamilton-Cayley equation, 21
Hardening,

isotropic, 180

kinematic, 181

strain, 176, 183

work, 176, 183
Harmonic functions, 166
Heat,

conduction law, 149

flux, 129

radiant, 129
Hencky equations, 183
Hereditary integrals, 201
Homogeneous,

deformation, 95

material, 44
Hookean solid, 196
Hydrostatic pressure, 160
Hydrostatics, 163
Hyperelastic material, 149
Hypoelastic material, 149
Hysteresis, 176

Ideal,

gas, 160

materials, 132
Idealized stress-strain curves, 177
Idemfactor, 5
Identity matrix, 18
Incompressible flow, 126
Incremental theories, 181
Indeterminate vector product, 4
Indices, 9
Indicial notation, 8
Inelastic deformation, 175
Inertia forces, 48
Infinitesimal strain, 83
Initial conditions, 145
Inner product, 16



Integral theorems, 23
Internal energy, 129
Invariants, 21

of rate of deformation, 114

of strain, 89, 90

of stress, 51
Irreversible process, 130
Irrotational flow, 113, 164
Isothermal process, 140
Isotropy, 44, 142

Jacobian, 11, 79
Johnson’s apparent elastic-limit, 176

Kelvin (material) model, 197
Kinematic,

hardening, 181

viscosity, 163
Kinetic energy, 129
Kronecker delta, 13

Lagrangian,
description, 79
finite strain tensor, 82
infinitesimal strain tensor, 83
Lamé constants, 143
Laplace,
equation, 165
transform, 202, 205
Left stretch tensor, 87
Levy-Mises equations, 181
Line integrals, 23
Linear,
momentum, 127
rotation tensor, 83
thermoelasticity, 149
vector operator, 8
viscoelasticity, 196
Local rate of change, 111
Logarithmic strain, 175

Mass, 126
Material,
coordinates, 78
derivative, 110, 114-117
description of motion, 79
Matrices, 17-19
Maximum,
normal stress, 52
shearing stress, 52, 53
Maxwell (material) model, 197
Metric tensor, 13
Mises yield condition, 178
Modulus,
bulk, 143
complex, 203
loss, 203
shear, 143
storage, 202
Mohr’s circles,
for strain, 91
for stress, 54-56
Moment of momentum, 128
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Momentum principle, 127
Motion, 110

steady, 112
Multiplication of,

matrices, 18

tensors, 15

vectors, 3

Navier-Cauchy equations, 144
Navier-Stokes equations, 162
Navier-Stokes-Duhem equations, 162
Newtonian viscous fluid, 161, 196
Normal stress components, 47

Octahedral,

plane, 59

shear stress, 192
Orthogonal,

tensor, 87

transformation, 13
Othogonality conditions, 13, 11
Orthotropic, 142
Outer product, 15

Parallelogram law of addition, 2
Particle, 77
Path lines, 112
Perfectly plastic, 176
Permutation symbol, 16
m-plane, 179
Plane,

deformation, 91

elasticity, 145

strain, 91, 145

stress, 56-57, 145
Plastic,

deformation, 175

flow, 175

potential theory, 181

range, 176

strain increment, 182
Point, 77
Poisson’s ratio, 143
Polar,

decomposition, 87

equilibrium equations, 148
Position vector, 77
Post-yield behavior, 180
Potential,

flow, 165

plastic, 182
Prandtl-Reuss equations, 181
Pressure,

fluid, 160

function, 163
Principal,

axes, 20

strain values, 89

stress values, 51, 58
Proper transformation, 17
Proportional limit, 177
Pure shear, 178
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Quadric of,
strain, 88, 89
stress, 50
_ Quasistatic viscoelastic problem, 205

Range convention, 8
Rate of deformation tensor, 112
Rate of rotation vector, 114
Reciprocal basis, 28
Rectangular Cartesian coordinates, 6
Relative displacement, 83
Relaxation,

function, 201

spectrum, 201

test, 199
Retardation,

spectrum, 201

time, 199
Reversible process, 130
Reynold’s transport theorem, 123
Right stretch tensor, 87
Rigid displacement, 82
Rotation tensor,

finite, 87

infinitesimal, 83, 84
Rotation vector, 83

St. Venant’s principle, 145
Scalar, 1

field, 22

of a dyadic, 4

triple product, 4
Second law of thermodynamics, 130
Shear,

modulus, 143

strain components, 86

stress components, 52
Slip line theory, 184
Small deformation theory, 82
Spatial coordinates, 78
Specific,

entrop¥, 130

heat, 149
Spherical,

coordinates, 8

tensor, 57, 91
Spin tensor, 112
Standard linear solid, 197
State of stress, 46
Stokes’ condition, 161
Stokes’ theorem, 23
Stokesian fluid, 161
Strain,

deviator, 91

ellipsoid, 88

energy, 141

hardening, 176

natural, 112, 175

plane, 91

rate, 112

shearing, 86

spherical, 91

transformation laws, 88

INDEX

Stream function, 165
Stream lines, 112
Stress,
components, 47
conservative, 131
deviator, 57
effective, 182
ellipsoid, 52
function, 147
invariants, 51
Mohr’s circles for, 54-56
normal, 47
plane, 56
power, 130
principle, 51
quadric, 50
shear, 47, 52
spherical, 57
symmetry, 48
tensor, 46
transformation laws, 49
vector, 45
Stretch,
ratio, 86
tensor, 87
Summation convention, 8, 10
Superposition theorem, 145
Surface forces, 45
Symbolic notation, 2, 10
Symmetry,
elastic, 142
tensor, 19

Temperature, 130
Tension test, 175
Tensor,
Cartesian, 1, 12, 13
components of, 1
contravariant, 11
covariant, 12
deformation, 81
derivative of, 22
fields, 22
general, 1, 11
metric, 12
multiplication, 15
powers of, 21
rank, 1
stretch, 87
transformation laws, 1
Tetrahedron of stress, 47
Thermal equation of state, 132
Thermodynamic process, 130
Thermoelasticity, 133, 149
Transformation,
laws, 13, 88
of tensors, 1
orthogonal, 13, 14
Tresca yield condition, 178
Triangle rule, 2
Triple vector product, 4




Two-dimensional elastostatics,
in polar form, 148
in rectangular form, 145

Uncoupled thermoelasticity, 133, 150
Uniqueness theorem, 145, 158
Unit,

dyadic, 5

relative displacements, 83

triads, 7

vector, 3

Vector,
addition, 2
displacement, 78
dual, 16
field, 22
of a dyadic, 4
position, 12, 77
potential, 126
products, 3, 4, 16
rotation, 83
traction, 46
transformation law, 14
vorticity, 113
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Velocity, 110, 111

complex, 166

potential, 164

strain, 112
Viscoelastic stress analysis, 204-206
Viscoelasticity, 196
Viscous stress tensor, 160
Voigt model, 197
Vorticity,

tensor, 112

vector, 113

Work,
hardening, 176
plastic, 182

Yield,
condition, 177
curve, 179
surface, 179
Young’s modulus, 143

Zero,
matrix, 17
order tensor, 1
vector, 2
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